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Lecture 24

Orbital Angular Momentum
And Spin Angular Momentum 

In this lecture you will learn:

• Orbital angular momemtum
• Spin angular momentum
• Orbital angular momentum eigenstates and eigenvalues
• Spin angular momentum eigenstates and eigenvalues
• Spinor wavefunctions
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Classical Orbital Angular Momentum

The classical angular momentum of a particle with respect to a 
point        is defined as:

     oL t r t r p t    
   

 r t


 p t


Angular momentum is a vector with three components:

ˆ ˆ ˆx y zL L x L y L z  


where:
x z y

y x z

z y x

L yp zp
L zp xp
L xp yp

 

 

 

or


Usually the point          is taken to be the origin and so:or


     L t r t p t 
  

Finally the squared magnitude of the angular momentum is:

2 2 2 2. x y zL L L L L L   
 
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Quantum Orbital Angular Momentum Operator

In quantum mechanics, the angular momentum is an observable and the 
corresponding operator is:

ˆ ˆ ˆ ˆˆ ˆ ˆx y zL L x L y L z  


ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆˆ ˆ

x z y

y x z

z y x

L yp zp

L zp xp

L xp yp

 

 

 

ˆ ˆ ˆ ˆ ˆL r p p r    
    

It is a vector operator with three components:

where:

 r t


 p t


Finally the squared magnitude of the angular momentum is also an operator:

2 2 2 2ˆ ˆˆ ˆ ˆ ˆ. x y zL L L L L L   
 
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It is not difficult to show (Homework 4) the following commutation relations:
Orbital Angular Momentum Commutation Relations

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

L L i L

L L i L

L L i L

   
   
   







ˆ
xL

ˆ
yLˆ

zL

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , 0x y zL L L L L L            

Also, the        operator commutes with all three components of the angular momentum:2L̂

How do we find states of definite angular momentum? What do the commutation 
relations tell us? 

● Eigenstates of one component of the angular momentum will likely NOT be 
eigenstates of the other two components of the angular momentum

● We can find eigenstates of one component of the angular momentum that will  also 
be eigenstates of the        operator2L̂
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Eigenstates and Eigenvalues  of ˆ
zL

We first try to find the eigenstates and eigenvalues of the z-component of the angular 
momentum operator

ˆ ˆ ˆˆ ˆz y xL xp yp 

Let         be an eigenstate of        with eigenvalue   :    ˆ
zL

ˆ
zL   

In position basis, this becomes:

   

ˆ

ˆ ˆˆ ˆ, , , ,

, , , ,

z

y x

r L r
x y z xp yp x y z

x y x y z x y z
i y x

  

  

 



  

  
     

 



The equation becomes simpler in spherical coordinates:

   , , , ,r r
i

     






 sin cos
sin sin
cos

x r
y r
z r

 
 





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   , , , ,r r
i

     








Solution will give us only the -dependence of the eigenfunction:

   , , ,
i

r f r e


    

x

y

z

The circularly travelling wave must be in 
phase with itself after one complete 
roundtrip:

   
 



2

2

, 2 , , ,

1

..... 3, 2, 1,0, 1, 2, 3,......

i i

i

r r

e e

e

m m

   

 

      





  

 

 

        

 





The eigenvalue of          must be an integral multiple of    ˆ
zL 

 ..... 3, 2, 1,0, 1, 2, 3,......m m        

Eigenstates and Eigenvalues  of ˆ
zL
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Eigenstates and Eigenvalues  of ˆ
zL

ˆ ....... 2, 1,0, 1, 2,......zL m m m m     

The eigenstates of             can be labeled by the corresponding eigenvalue:ˆ
zL

Since:

the eigenstates          of         will also be eigenstates of          : 

2ˆ ˆ, 0zL L   

ˆ
zLm 2L̂

2L̂ m m

How do we find all the eigenstates and eigenvalues of        ?         2L̂
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Eigenstates and Eigenvalues  of 2̂L

Let         be an eigenstate of        with eigenvalue   :    2L̂

2L̂   

In position basis, this becomes:

   

2

2

2 2

2 2

ˆ

ˆ, , , ,

1 1sin , , , ,
sin sin

r L r

r L r

r r
i

  

      

      
    



 

                   

 



This looks too complicated !!
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Orbital Angular Momentum and Commutation Relations
The components of the angular momentum operator have the following commutation 
relations:

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

L L i L

L L i L

L L i L

   
   
   







2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , 0x y zL L L L L L            

2 2 2 2ˆ ˆˆ ˆ ˆ ˆ. x y zL L L L L L   
 

ˆ ˆ ˆ ˆˆ ˆ ˆx y zL L x L y L z  

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Eigenvalues and Eigenstates of the Angular Momentum
Whatever we do next will apply to both spin and orbital angular momentum

We need to find the eigenvalues of the angular momentum

Since                         , we seek states that are eigenstates of both         and         :  

2 2

ˆ

ˆ
zL m m m

L m m









2̂ ˆ, 0zL L   
2L̂ ˆ

zL

We can say the following:
2

2

2

ˆ ˆ 0
ˆ ˆ 0
ˆ ˆ 0

x x

y y

z z

L L

L L

L L

     

     

     

   

   

   

It follows that all the eigenvalues        of must be positive semi-definite :

m and  are some unknown 
numbers (not assuming 
anything here)

2 2

2 2

ˆ

ˆ 0
0

L m m

m L m








  

 





2L̂
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2 2

ˆ

ˆ
zL m m m

L m m








m and  are some unknown 
numbers and  is ≥ 0 

We write  as ℓ(ℓ+1) where ℓ is some number that is also ≥ 0 (for convenience only): 

 2 2

ˆ

ˆ 1
zL m m m

L m m



 



  

Define two new operators as:

The new operators have the following commutation relations:

ˆ ˆ ˆ ˆ ˆ ˆ
x y x yL L iL L L iL    

ˆ ˆ ˆ,zL L L      

And:
2 2 2 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

x y x y z z

x y x y z z

L L L L i L L L L L

L L L L i L L L L L

 

 

       
       





Eigenvalues and Eigenstates of the Angular Momentum

2ˆ ˆ, 0L L   
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Eigenvalues and Eigenstates of the Angular Momentum: 
Start from an eigenstate of         and        :

m and ℓ are some unknown 
numbers and ℓ ≥ 0

And then consider the state:

1) Apply        operator to it:
L̂ m

   
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ             1

z z zL L m L L L L m L L m m

m L m

    



     

 

 



ˆ
zL

This means               is also an eigenstate of        with eigenvalue          L̂ m
ˆ
zL  1m  

ˆ
zL

 2 2

ˆ

ˆ 1
zL m m m

L m m



 



  

2L̂

      2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0 1 1L L m L L L L m L m L m                  

This means               is also an eigenstate of        with the same  eigenvalue          L̂ m   21  

2) Apply        operator to it:2L̂

2L̂

L̂



ECE 3030 – Summer 2009 – Cornell University

Eigenvalues and Eigenstates of the Angular Momentum:       
Start from an eigenstate of         and        :

m and ℓ are some unknown 
numbers and ℓ ≥ 0

And then consider the state:

1) Apply        operator to it:
L̂ m

   
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ             1

z z zL L m L L L L m L L m m

m L m

    



      

 

 



ˆ
zL

This means               is also an eigenstate of        with eigenvalue          L̂ m
ˆ
zL  1m  

ˆ
zL

 2 2

ˆ

ˆ 1
zL m m m

L m m



 



  

2L̂

      2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0 1 1L L m L L L L m L m L m                  

This means               is also an eigenstate of        with the same  eigenvalue          L̂ m   21  

2) Apply        operator to it:2L̂

2L̂

L̂
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Eigenvalues and Eigenstates of the Angular Momentum

This means                     is also an eigenstate of        with eigenvalue                    and it is 

also an eigenstate of        with eigenvalue                                       

 ˆ p
L m

ˆ
zL  m p 

We can write:

   
   

2

22 2

ˆ 1
ˆ 1

ˆ ˆ 1 1
ˆ ˆ ˆ

1 1
ˆ 1 1 1

z z

L m m

L m A m

m L L m A m m

m L L L m A

A m m

L m m m m





 



 

  

   

   

    

     



  

  

Similarly:
   ˆ 1 1 1L m m m m       

  21  2L̂

This means                     is also an eigenstate of        with eigenvalue                    and it is 

also an eigenstate of        with eigenvalue                                       

 ˆ p
L m

ˆ
zL  m p 

  21  2L̂



ECE 3030 – Summer 2009 – Cornell University

Eigenvalues and Eigenstates of the Angular Momentum
1) Consider the state:

The inner product of this state with itself must be non-negative:

   ˆ ˆ 1 1 0
1

m L L m m m
m

        
    

  
 

2) Consider the state:

The inner product of this state with itself must be non-negative:

   
 

ˆ ˆ 1 1 0
1

m L L m m m

m
        

    

  

 

(1) and (2) above give:

m   

   ˆ 1 1 1L m m m m       

   ˆ 1 1 1L m m m m       
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Largest Possible Value of m
Suppose we have a state           with the largest 
possible value of m such that:

m

1
m
m


 



m   
Recall that:

Then application of         to this state should not give us another state, but we know that:L̂

The only way to ensure that we do not get a bonafide state by applying        to        is by 
requiring that the largest allowed value of m must be equal to ℓ, because then:

mL̂

ˆ 0L m  when m = ℓ

This means that the largest allowed value of m is EXACTLY equal to ℓ and:

ˆ 0L m  

   ˆ 1 1 1L m m m m       
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1
m
m

 
  



Smallest Possible Value of m
Suppose we have a state           with the smallest 
possible value of m such that:

m

m   
Recall that:

Then application of         to this state should not give us another state, but we know that:L̂

The only way to ensure that we do not get a bonafide state by applying        to        is by 
requiring that the smallest allowed value of m must be equal to -ℓ, because then:

mL̂

ˆ 0L m  when m = -ℓ

This means that the smallest allowed value of m is EXACTLY equal to –ℓ and:

ˆ 0L m   

   ˆ 1 1 1L m m m m       
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Eigenstates of        and           .2̂Lˆ
zL

Eigenstates of         must be:ˆ
zL

1
2

2
1

m
m
m

m
m
m



 

 

  

  

 












It must be possible to reach –ℓ from +ℓ by subtracting a positive integer “p”, i.e.:

2

2

p
p

p

  
 

 

 




This means ℓ must be a positive integer or positive half-integer

 2 2

ˆ

ˆ 1
zL m m m

L m m



 



  

These states are all eigenstates of        with the 
same eigenvalue   21  

2L̂

m   

But the requirement of having a single-valued wavefunction
means ℓ must be a positive integer
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ℓ=0

0, 0m 
 2 2

ˆ 0, 0 0 0, 0 0
ˆ 0, 0 0 0 1 0, 0 0
zL m m

L m m

     

      

 

  

ℓ=1

1, 1
1, 0
1, 1

m
m
m

  

 

  



  

 

2 2

2 2

ˆ 1, 1,
ˆ 1, 1 1,

       1 1 1 1, 2 1,

zL m m m

L m m

m m

  

   

    

  

    

   

0 0m  

1 1m  

One can classify the angular momentum eigenstates by the quantum numbers “ℓ” and 
“m” as follows:

Eigenstates of        and           .2̂Lˆ
zL



ECE 3030 – Summer 2009 – Cornell University

2, 2
2, 1
2, 0
2, 1
2, 2

m
m
m
m
m

  

  

 

  

  







 
 

2 2

2 2

ˆ 2, 2,
ˆ 2, 1 2,

       2 2 1 2, 6 2,

zL m m m

L m m

m m

  

   

    

  

    

   

2 2m  

ℓ=2

One can classify the angular momentum eigenstates by the quantum numbers “ℓ” and 
“m” as follows:

Eigenstates of        and           .2̂Lˆ
zL

ℓ=3
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Eigenstates of        and      : Orthogonality2̂Lˆ
zL

Orthogonality:

Since the states            are eigenstates of the Hermitian operator        , therefore:,m ˆ
zL

, ' , '', ' , m mm m     
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Wavefunctions for the Eigenstates of       and       2̂L
Let         be an eigenstate of        :    2L̂

 2 2ˆ 1L     

In position basis, this becomes:

 
 

     

2 2

2 2

2 2
2

2 2

ˆ 1
ˆ, , 1 , ,

1 1sin , , 1 , ,
sin sin

r L r

r L r

r r
i

 

     

      
    

 

  

                    

 
  

  

   

     , , imr e f g r   Let:

     

     

2

2 2

2

2

1 1sin , , 1 , ,
sin sin

1 sin 1
sin sin

r r

m f f

      
    

  
   

               
             

 

 

ˆ
zL
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Spherical Harmonics
Let         be an eigenstate of        :    2L̂  2 2ˆ 1L     

     , , imr e f g r   Let:

     
2

2
1 sin 1

sin sin
m f f  

   

             
 

Solutions are:    cosmf P  

Associated Legendre polynomial
m   

     , , cosm imr g r P e      

Spherical harmonic

   
   !2 1, cos

4 !
m m imm

Y P e
m

  





 



     , , , , , ,mr r Y r m         

Usually one writes the wavefunctions for the eigenstates of           and           as:2L̂ ẑL

 ,mY   
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Orbital Angular Momentum and the Hydrogen Atom

 r t


 p t


Proton

Electron

The proton is ~1837 times more massive than an electron

As a crude approximation one may consider the proton 
to be stationary and focus just on the electron

The electron Hamiltonian is:

We need to find the energy eigenstates and the energy 
eigenvalues:

We also know from the spherical symmetry of the 
potential that:

 
2ˆˆ

2
pH V r
m

 


 
2

ˆ
ˆ4 o

eV r
r

 




Coulomb potential
Ĥ E 

2ˆ ˆ ˆ ˆ, , 0zH L H L      

This means that the angular momentum eigenstates could also be the energy 
eigenstates!!
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Orbital Angular Momentum and the Hydrogen Atom

 r t


 p t


Proton

Electron

2ˆ ˆ ˆ ˆ, , 0zH L H L      

The angular momentum eigenstates could also be the 
energy eigenstates!!

ℓ=0

ℓ=1

S-orbitals of the hydrogen atom (1s, 2s, 3s, 4s, …..)

P-orbitals of the hydrogen atom (2p, 3p, 4p, ….)

0, 0m 
 2 2

ˆ 0, 0 0 0, 0 0
ˆ 0, 0 0 0 1 0, 0 0
zL m m

L m m

     

      

 

  

1, 1
1, 0
1, 1

m
m
m

  

 

  



  

 

2 2

2 2

ˆ 1, 1,
ˆ 1, 1 1,

       1 1 1 1, 2 1,

zL m m m

L m m

m m

  

   

    

  

    

   

1 1m  
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Orbital Angular Momentum and the Hydrogen Atom

 r t


 p t


Proton

Electron

2ˆ ˆ ˆ ˆ, , 0zH L H L      

The angular momentum eigenstates could also be the 
energy eigenstates!!

ℓ=2

D-orbitals of the hydrogen atom (3d, 4d, 5d, …..)

2, 2
2, 1
2, 0
2, 1
2, 2

m
m
m
m
m

  

  

 

  

  







 
 

2 2

2 2

ˆ 2, 2,
ˆ 2, 1 2,

       2 2 1 2, 6 2,

zL m m m

L m m

m m

  

   

    

  

    

   

2 2m  
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CSCO for the Hydrogen Atom

 r t


 p t


Proton

Electron

 
2

ˆ
ˆ4 o

eV r
r

 




Coulomb potential

 
2ˆˆ

2
pH V r
m

 


The electron Hamiltonian is:

There are many different states with the same m, ℓ values 
but they do have different energy eigenvalues

And since                    all commute, we can form a CSCO 
with these three operators!

Knowing the angular momentum numbers, m and ℓ, are 
not enough to uniquely specify all states of the Hydrogen 
atom. 

In other words,             by themselves do not form a CSCO2ˆ ˆ,zL L

2ˆ ˆ ˆ, ,zH L L
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Spin  Angular Momentum of Massive Particles
The components of the spin angular momentum operator have the same commutation 
relations as the components of the orbital angular momentum operator:

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

S S i S

S S i S

S S i S

   
   
   







In addition if we define           operator as:

2 2 2 2ˆ ˆˆ ˆ ˆ ˆ. x y zS S S S S S   
 

ˆ ˆ ˆ ˆˆ ˆ ˆx y zS S x S y S z  


2Ŝ

Then:

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , 0x y zS S S S S S            

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

L L i L

L L i L

L L i L

   
   
   







2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , 0x y zL L L L L L            

2 2 2 2ˆ ˆˆ ˆ ˆ ˆ. x y zL L L L L L   
 

ˆ ˆ ˆ ˆˆ ˆ ˆx y zL L x L y L z  




ˆ

....... 2, 1,0, 1, 2,......
zL m
m
 

    


ˆ ?zS  

Eigenstates and eigenvalues of the 
z-component: This came from the 

wavefunction being 
single-valuedNo wavefunction for 

spin states
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Eigenvalues and Eigenstates of the Spin Angular Momentum
Whatever we do next will applies to both spin and orbital angular momentum

We need to find the eigenvalues of the angular momentum

Since                         , we seek states that are eigenstates of both         and         :  

2 2

ˆ

ˆ
zS m m m

S m m









2ˆ ˆ, 0zS S   
2Ŝ ˆ

zS

We can say the following:
2

2

2

ˆ ˆ 0
ˆ ˆ 0
ˆ ˆ 0

x x

y y

z z

S S

S S

S S

     

     

     

   

   

   

It follows that all the eigenvalues        of must be positive semi-definite :

m and  are some unknown 
numbers

2 2

2 2

ˆ

ˆ 0
0

S m m

m S m








  

 





2Ŝ
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2 2

ˆ

ˆ
zS m m m

S m m








m and  are some unknown 
numbers and  is ≥ 0 

We write  as s(s+1) where “s” is some number that is also ≥ 0 (for convenience only): 

 2 2

ˆ

ˆ 1
zS m m m

S m s s m



 





Define two new operators as:

The new operators have the following commutation relations:

ˆ ˆ ˆ ˆ ˆ ˆ
x y x yS S iS S S iS    

ˆ ˆ ˆ,zS S S      

And:
2 2 2 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

x y x y z z

x y x y z z

S S S S i S S S S S

S S S S i S S S S S

 

 

       
       





Eigenvalues and Eigenstates of the Spin Angular Momentum

2ˆ ˆ, 0S S   



ECE 3030 – Summer 2009 – Cornell University

Eigenvalues and Eigenstates of the Spin Angular Momentum:       .
Start from an eigenstate of         and        :

m and s are some unknown 
numbers and s ≥ 0

And then consider the state:

1) Apply        operator to it:
Ŝ m

   
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ             1

z z zS S m S S S S m S S m m

m S m

    



     

 

 



ˆ
zS

This means               is also an eigenstate of        with eigenvalue          Ŝ m
ˆ
zS  1m  

ˆ
zS

 2 2

ˆ

ˆ 1
zS m m m

S m s s m



 





2Ŝ

      2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0 1 1S S m S S S S m S s s m s s S m              

This means               is also an eigenstate of        with the same  eigenvalue          Ŝ m   21s s  

2) Apply        operator to it:2Ŝ

2Ŝ

Ŝ
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Start from an eigenstate of         and        :

m and s are some unknown 
numbers and s ≥ 0

And then consider the state:

1) Apply        operator to it:
Ŝ m

   
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ             1

z z zS S m S S S S m S S m m

m S m

    



      

 

 



ˆ
zS

This means               is also an eigenstate of        with eigenvalue          Ŝ m
ˆ
zS  1m  

ˆ
zS

 2 2

ˆ

ˆ 1
zS m m m

S m s s m



 





2Ŝ

      2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0 1 1S S m S S S S m S s s m s s S m              

This means               is also an eigenstate of        with the same  eigenvalue          Ŝ m   21s s  

2) Apply        operator to it:2Ŝ

2Ŝ

Eigenvalues and Eigenstates of the Spin Angular Momentum:       .Ŝ
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Eigenvalues and Eigenstates of the Spin Angular Momentum

This means                     is also an eigenstate of        with eigenvalue                    and it is 

also an eigenstate of        with eigenvalue                                       

 ˆ p
S m

ˆ
zS  m p 

We can write:

   
   

2

22 2

ˆ 1
ˆ 1

ˆ ˆ 1 1
ˆ ˆ ˆ

1 1
ˆ 1 1 1

z z

S m m

S m A m

m S S m A m m

m S S S m A

A s s m m

S m s s m m m





 



 

  

   

   

    

     







Similarly:

   ˆ 1 1 1S m s s m m m     

  21s s  2Ŝ

This means                     is also an eigenstate of        with eigenvalue                    and it is 

also an eigenstate of        with eigenvalue                                       

 ˆ p
S m

ˆ
zS  m p 

  21s s  2Ŝ
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Eigenvalues and Eigenstates of the Spin Angular Momentum

   ˆ 1 1 1S m s s m m m     
1) Consider the state:

The inner product of this state with itself must be non-negative:

   ˆ ˆ 1 1 0
1

m S S m s s m m
s m s
        

    



   ˆ 1 1 1S m s s m m m     
2) Consider the state:

The inner product of this state with itself must be non-negative:

   
 

ˆ ˆ 1 1 0
1

m S S m s s m m

s m s
        

    



(1) and (2) above give:

s m s  
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Largest Possible Value of m
Suppose we have a state           with the largest 
possible value of m such that:

m

1
m s
m s


 

s m s  
Recall that:

Then application of         to this state should not give us another state, but we know that:

   ˆ 1 1 1S m s s m m m     

Ŝ

The only way to ensure that we do not get a bonafide state by applying        to        is by 
requiring that the largest allowed value of m must be equal to s, because then:

mŜ

ˆ 0S m  when m = s

This means that the largest allowed value of m is EXACTLY equal to s and:

ˆ 0S m s  
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1
s m
s m

 
  

Smallest Possible Value of m
Suppose we have a state           with the smallest 
possible value of m such that:

m

s m s  
Recall that:

Then application of         to this state should not give us another state, but we know that:

   ˆ 1 1 1S m s s m m m     

Ŝ

The only way to ensure that we do not get a bonafide state by applying        to        is by 
requiring that the smallest allowed value of m must be equal to -s, because then:

mŜ

ˆ 0S m  when m = -s

This means that the smallest allowed value of m is EXACTLY equal to –s and:

ˆ 0S m s   
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Eigenstates of        and           .2Ŝˆ
zS

Eigenstates of         must be:ˆ
zS

1
2

2
1

m s
m s
m s

m s
m s
m s



 

 

  

  

 




It must be possible to reach –s from +s by subtracting a positive integer “p”, i.e.:

2

2

s p s
s p

ps

  
 

 
This means s must be a positive integer or positive half-integer

 2 2

ˆ

ˆ 1
zS m m m

S m s s m



 





These states are all eigenstates of        with the 
same eigenvalue   21s s  

2Ŝ

s m s  
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Eigenstates of        and           .2Ŝˆ
zS

s=0

0, 0s m 
 2 2

ˆ 0, 0 0 0, 0 0
ˆ 0, 0 0 0 1 0, 0 0
zS s m s m

S s m s m

     

      

s=1/2

1 2, 1 2
1 2, 1 2

s m
s m
  

  
 2 2

2 2

ˆ 1 2, 1 2,
ˆ 1 2, 1 1 2,

1 1 3        1 1 2, 1 2,
2 2 4

zS s m m s m

S s m s s s m

s m s m

  

   

      
 





 

0 0m  

1 1
2 2

m  

One can classify the angular momentum eigenstates by the quantum numbers “s” and 
“m” as follows:
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Eigenstates of        and           .2Ŝˆ
zS

One can classify the angular momentum eigenstates by the quantum numbers “s” and 
“m” as follows:

s=3/2

3 2, 3 2
3 2, 1 2
3 2, 1 2
3 2, 3 2

s m
s m
s m
s m

  

  

  

    2 2

2 2

ˆ 3 2, 3 2,
ˆ 3 2, 1 3 2,

3 3 15        1 3 2, 3 2,
2 2 4

zS s m m s m

S s m s s s m

s m s m

  

   

      
 





 

3 2 3 2m  

s=1

1, 1
1, 0
1, 1

s m
s m
s m

  

 

    
 

2 2

2 2

ˆ 1 2, 1 2,
ˆ 1 2, 1 1 2,

        1 1 1 1 2, 2 1 2,

zS s m m s m

S s m s s s m

s m s m

  

   

    





 

1 1m  
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Fermions (with Mass)

Fermions are particles which are eigenstates of        with s equal to half-integer:2Ŝ

 2 2ˆ , 1 ,S s m s s s m   or or1 3 5 ..........
2 2 2

s where

And where:

ˆ , ,zS s m m s m  s m s  

Example: Electrons
For electrons s is equal to ½ and therefore eigenstates of       are:

s is called the spin of the particle

1 1 1 1ˆ , ,
2 2 2 2 2
1 1 1 1ˆ , ,
2 2 2 2 2

z

z

S

S

   

   





ˆ
2

ˆ
2

z

z

S z z

S z z

   

   




Or if you prefer:

2 2 21 1 1 1 3 1ˆ , 1 , ,
2 2 2 2 4 2

S m m m    
 

 

ˆ
zS
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Bosons (with Mass)

Bosons are particles which are eigenstates of        with s equal to an integer:2Ŝ

 2 2ˆ , 1 ,S s m s s s m   or or0 1 2 ..........s where

And where:
ˆ , ,zS s m m s m  s m s  

Example: W and Z vector bosons (that are responsible for the electroweak interactions)

For W and Z bosons, s is equal to 1

s is called the spin of the particle

ˆ 1, 1 1, 1
ˆ 1,0 0 1,0
ˆ 1, 1 1, 1

z

z

z

S

S

S

   



   





 2 2 2ˆ 1, 1 1 1 1, 2 1,S m m m   
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Spin vs Orbital Angular Momentum
Spin angular momentum and orbital angular momentum are similar in many ways:

 2 2ˆ , 1 ,L m m     

ˆ , ,zL m m m   m   

or or0 1 2 ..........where

There is one big difference between the orbital and spin angular momentum 
characteristics: 

For spin angular momentum:

For orbital angular momentum: or or0 1 2 ..........

or or or or1 30 1 2..........
2 2

s 

Why the difference? Recall that the values of m for orbital angular momentum must be 
integers (this follows from the requirement of the wavefunction being single-valued), 
but since there is no wavefunction associated with the spin state of a particle, values 
of m for spin angular momentum can be half-integers. Consequently, ℓ must only 
take positive integer values. But s can take both integer and half-integer values. 

 2 2ˆ , 1 ,S s m s s s m  

ˆ , ,zS s m m s m  s m s  

or or or0 1 2 1 3 2 ..........s where
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Quantum States of Particles with Spin
The spin degree of freedom is included in the quantum state by just enlarging the 
Hilbert space

So, for example, the quantum state of a spin-half electron with spin-up is written as,

1
1 2

0
z m   

 
          

 

Spatial degrees of 
freedom

Spin degree of freedom

Consider two states:

1

2

1
2
1
2

z z

z z

  

  

       

       

Their inner product will be:

2 2
1
2
1            
2

z z z z z z z z         

   

             

   

0 0
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Quantum States of Particles with Spin: Spinor Wavefunctions

   
22 21 1

22
r z r z z r z z r             
   

If we need the probability of finding the electron at location     with spin-up for the 
state        we take the squared magnitude of the inner product:

r




If we need the wavefunction, we can take a partial inner-product on the coordinate basis:

1 01 1
0 12 2

z z    
                        

   

   

 
 

1
2

1        
2

1 01        
0 12

1        
2

r r z r z

r z r z

r r

r
r

  

 

 




     

     

    
     

    
 

  
 

  

 

 




Consider:

Two-component spinor 
wavefunction
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Spinor States and Operators
Consider a spinor state:

1
2

z z         

The wavefunction is:

     
 

1 1 1
2 2 2

r
r r z r z r z r z

r


    

 

                
 


    



Suppose we act upon it with the orbital angular momentum operator           :ˆ
zL

   1ˆ ˆ ˆ
2z z zL L z L z         

Suppose we act upon it with the spin angular momentum operator       :ˆ
zS

   1ˆ ˆ ˆ
2

1         
2 2

z z zS S z S z

z z

  

 

       

            



Point to note here: each operator acts in its own sub-space of the full Hilbert space 
of the particle


