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Lecture 23

Quantum Information Processing and Computation - II
Quantum No-Cloning Theorem

Quantum Networks and Quantum Teleportation
Grover’s Search Algorithm

Quantum Superdense Coding
Quantum Parallelism and the Deutsch Algorithm

The Bernstein-Vazirani Algorithm 

In this lecture you will learn:

• Can one copy qubits?
• Quantum networks and teleportation
• Quantum memory search and Grover’s algorithm
• Quantum information, coding, and superdense coding
• Quantum parallelism, quantum computing and the Deutsch algorithm
• Quantum parallelism, quantum computing and the Bernstein-Vazirani algorithm
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Classical Digital Circuits: Bit Copying

Copying of bits is very common in 
digital circuits 

A

B

C

We make copies of digital data and store it all the time every day:

Magnetic hard drive Electronic flash drive
Cloud data storage

Can quantum bits or qubits be copied?
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Qubit Copying

0 1A A A   

How do we make a copy of this qubit? 

What we want is:

A

0 1A A A   A 0 1B B B   B

We have to make a copy without “looking” at it (or without measuring it)

If we measure it, we will collapse it !!

We have to copy 
without looking!

B



ECE 3030 – Summer 2009 – Cornell University

Copying (or Cloning) Quantum Bits (or Qubits)

Suppose one has a qubit           of system A and one needs to make a copy of this qubitA

Qubit copying gate

A

0 B

A

BInitialized 
system B 
input

Qubit to 
be copied

OutputInput

Qubit to 
be copied

Copy (or clone) 
of the qubit

Suppose one has realized this quantum copying or cloning device. We write its 
operation as:

ˆ 0A B A BU  

Û

Suppose we then use this machine to clone another qubit            of system A:A

Qubit copying gate

A

0 B

A

B
OutputInput

ˆ 0A B A BU  

Û
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Copying (or Cloning) Quantum Bits (or Qubits)
Satisfied with your success, you decide to make a copy of the superposition state:

Qubit copying gate

1
2 A A   

0 B

OutputInput Û

We can work out the output state as follows:

1 1ˆ ˆ0 0 0
2 2
1 1ˆ ˆ ˆ0 0 0 0
2 2

1
2

A A B A B A B

A B A B A B A B

A B A B

U U

U U U

   

   

   

              

        

    Entangled state!

But we wanted this output:
1 1
2 2A A B B           

No linear quantum operation can perfectly clone any arbitrary qubit
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Quantum No-Cloning Theorem: Formal Proof by Contradiction
Suppose we have a cloning machine that can 
clone two arbitrary states of system A:           
and            : 

ˆ 0A B A BU  

ˆ 0A B A BU  

A
A

Take the inner product of the states appearing on the left and right sides of the 
above two equations:

       †

†

2

ˆ ˆ0 0

ˆ ˆ0 0
0 0

A B A B A B A B

A A B B A B A B

A A B B A A B B

U U

U U

     

     

     

   



 

 

 

This means that either                       or                     . Which means that the two states 
we considered          and           cannot be arbitrary – they are either the same or 
orthogonal and hence our initial assumption that any arbitrary state of system A can 
be cloned was wrong  

0   1  
A

A
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Quantum Information Transfer and Quantum Networks

Quantum 
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Classical 
comm link

Classical 
comm link

Classical 
comm link

Network 
interface

How does one get quantum information 
in qubits from one node to another??

Quantum link (??)

Network 
node

Network 
node

Network 
node

Quantum 
memory

Quantum 
processor

Network 
interface

Quantum 
memory

Network 
interface

Quantum 
processor

Quantum 
memory
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Quantum Teleportation: The Setting
Consider the following scenario:

A
0 B

Alice has a qubit in some unknown state            and she wants to send it to Bob, 
who is sitting in Greece with his own qubit initialized in state          . Alice and Bob 
want           to become                

A
0 B

Note: Alice cannot “look” at her qubit and then convey the information to Bob over the 
telephone so that Bob can convert his own qubit to match that of Alice. “Looking” will 
collapse the qubit.

0 B B

B

0 1A   In the most general case:

The only way, it seems, this could be possible is if Alice 
were to send her own qubit physically on a plane all the 
way to Bob ………..

A

B

A
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Quantum Teleportation: Entanglement as a Resource

A

B

A long long time ago, when Bob was still in USA, Alice and 
Bob generated an entangled qubit pair 𝑨ഥ and 𝑩 ……….

A

B

0

0

A

B

A

B

H

1 0 1
2

0

A A

B

  

1 0 0 1 1
2 A B A B  

And then Bob went away to Greece and took his 
entangled qubit with him ……. 
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Quantum Teleportation: Entanglement as a Resource

This existing shared entangled qubit pair can be used to “teleport” Alice’s new qubit          
onto Bob’s qubit B

A

A
B

A

A
B

Teleportation
A

Alice and Bob, now in different countries, share an entangled qubit pair 𝑨ഥ and 𝑩 :

1 0 0 1 1
2 A B A BS    
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Quantum Teleportation: Local Operations of Alice

1 0 0 1 1
2 A B A BS    A

B

HA

S
A
B

A

0 1A   

1 0 0 1 1
2
10 0 0 1 1
2

1   1 0 0 1 1
2

in A

A A B A B

A A B A B

A A B A B

S 







 

    

    

    

10 0 0 1 1
2

1   1 1 0 0 1
2

A A B A B

A A B A B





   

    

10 1 0 0 1 1
2 2

1   0 1 1 0 0 1
2 2

A A A B A B

A A A B A B





        

         

A

Shared entangled qubit pair
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Quantum Teleportation: Local Operations of Alice
HA

S
A
B

A

10 1 0 0 1 1
2 2

1   0 1 1 0 0 1
2 2

A A A B A B

A A A B A B





        

         

1 10 1 0 0 1 1 0 1 1 0 0 1
2 2 2 2
1 10 0 0 1 0 1 1 0
2 2

1 1  1 0 0 1 1 1 1 0
2 2

A A A B A B A A A B A B

A A B B A A B B

A A B B A A B B

 

   

   

                    

           

           

0 or 1
0 or 1

Alice’s Results Probability Bob’s Collapsed Qubit
0 and 0

0 and 1

1 and 0

1 and 1 1 0B B 

0 1B B 

1 0B B 

0 1B B 

Measurement
By Alice

Measurement by Alice

0.25

0.25
0.25

0.25



ECE 3030 – Summer 2009 – Cornell University

Quantum Teleportation: Local Operations of Bob

A
B

Telephone call

Alice’s Results Bob’s Qubit after Local Operations

0 and 0

0 and 1

1 and 0

1 and 1

0 1B B   

X

1 0B B 

1 0B B 

0 1B B 

0 1B B   

Z 0 1B B   

iY 0 1B B   

Alice provides just two 
bits of classical 
information to Bob 
based on her 
measurement results

A

B B

B B

B B
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0 0 0 1

0 1 0 1

1 0 0 1

1 1 0 1

A A B B

A A B B

A A B B

A A B B

 

 

 

 

   

   

   

   

Quantum Teleportation: End Result

A
B

A

When the dust has settled the quantum state of the three qubits is any one of 
the following – each with a-priori probability 1/4

Entanglement has vanished – but the initial qubit A of Alice has been “teleported” to 
qubit B of Bob
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Quantum Networks

Quantum 
processor

Quantum 
processor

Quantum 
processor

Network interface
(qubit memory, 
photonic interface, 
bell measurements, 
etc)

Network 
interface

Network 
interface

Entangled 
pair photon 
source

Classical 
comm link

Classical 
comm link

Classical 
comm link

1 0 0 1 1
2 A B A B  
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Quantum Parallelism and Quantum Computing 
Consider a quantum computer:

Quantum 
information 
processor

A
B
C

A
B
C

Suppose we would like to know the outputs given each of the following inputs: 
0 0 1 0 1 0 0 1 1
1 0 0

in A B C in A B C in A B C

in A B C

  



  



What if we make a superposition input that has all the above inputs:
1 0 0 1 0 1 0 0 1 1 1 0 0
2in A B C A B C A B C A B C      

Û

Then the output is:
ˆ

1 ˆ ˆ ˆ ˆ         0 0 1 0 1 0 0 1 1 1 0 0
2

out in

A B C A B C A B C A B C

U

U U U U

 

     

Q: Does this help speed up computation?
A: Not in any straightforward way ……
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The CAM Memory Search Problem
A content addressable memory takes a data word and finds the address of the location 
of the data word inside the memory (we will assume the provided data word is present 
somewhere in the memory)

CAM
N-bit address of the 
location of the data in the 
memory

10010011 ….01
Data

010…110….1010

CAM

10010011 ….01
Data

000…….00000 No

Yes

Starting N-bit address

Memory 
bank

Change the address

N-bit address of the 
location of the data in 
the memory

010…110….1010
Was the 
address 
correct?
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The CAM Memory Search Problem

Question: How many calls to the memory bank will be required to search through the 
memory bank and determine the address of the data in the memory bank?

Answer: 
● 2N-1 calls will be required on average (with random addresses) to determine the 
correct address

CAM

10010011 ….01
Data

000…….00000 No

Yes

Starting N-bit address

Memory 
bank

Change the address

N-bit address of the 
location of the data in 
the memory

010…110….1010
Was the 
address 
correct?
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Suppose the memory capacity is 2N ~ 1000 Tera Words (N ~50)

Suppose one memory call takes a 1 micro-sec. 

Then:

Searching through the memory bank for the correct address will require ~17 years on 
average (~35 years in the worst case scenario) !!

A quantum search process on a quantum memory bank may take just ~200 seconds !!

The CAM Memory Search Problem

CAM

10010011 ….01
Data

000…….00000 No

Yes

Starting N-bit address

Memory 
bank

Change the address

N-bit address of the 
location of the data in 
the memory

010…110….1010
Was the 
address 
correct?
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The Quantum Search Problem and Grover’s Algorithm
Suppose we have a quantum memory bank that takes data  and an N-qubit 
address         and returns             or              as outputs if the provided data is 
stored or not stored in the memory at the address provided, respectively

  

N qubit address

0 1 1 0 ........ 1 









Yes

No

Quantum memory bank

ˆ
MU

…
.

The quantum memory bank’s operation can always be modeled by a unitary 
operator

is unknown but it is a unitary operator! 

ˆ
MU

ˆ
MU

10010011 ….01
Data

0
1

0
1

1
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Suppose the correct address is given by the N-qubit

Then the memory bank can be described by the following unitary operator        :         ˆ
MU

 ˆ 1̂ 2MU w w  † †ˆ ˆ 1̂M MM MU U U U 

ˆ if
ˆ if
M

M

U w
U w

  

  

   


  

w

N qubit address

0 1 1 0 ........ 1 









Yes

No

Quantum memory bank

ˆ
MU

…
.

The Quantum Search Problem and Grover’s Algorithm

10010011 ….01
Data

w
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0

The Quantum Search Problem and Grover’s Algorithm
Quantum memory bank

ˆ
MU

.

.

.

H
H
H
H

H

0
0
0
0

0

0 0 0 0 ........ 0 0 0 0 0 0 ........ 0 1 0 0 0 0 ........ 1 01
.......... ........ 1 1 1 1 ........ 1 12in N

s
w


   

   
    

For the single-qubit 
Hadamard gate:

Let:
2'

2 1
0 0 0 0 ........ 0 0 0 0 0 0 ........ 0 1 0 0 0 0 ........ 1 01    

.................. 1 1 1 1 ........ 1 12 1

N

N

N

s w
s





   

  
   

H
1 0 1
2
  

Make the input:

' 0s w 

Superposition of all possible addresses

in
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Grover’s Algorithm

.

.

.

ˆ
GUˆ

MU

.

.

.

H
H
H
H

H

0
0
0
0

0

We will need another gate:

ˆ ˆ2 1GU s s ˆ 1̂ 2MU w w 

w

's

in s 

in out

1 1
2N

  

Initial input state is almost 
orthogonal to the desired 
state

2 1 1'
2 2

N

in N N
s w


 
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Grover’s Algorithm

.

.

.

ˆ
GUˆ

MU

.

.

.

H
H
H
H

H

0
0
0
0

0

ˆ ˆ2 1GU s s ˆ 1̂ 2MU w w 



w

's
in s 

ˆ
M inU 

ˆ ˆ
G M inU U 

1
2 1sin 1
2

N

N 


 

causes a reflection wrt the s’-axis

causes a reflection wrt the vector ˆ
GU

ˆ
MU

s

out

in out

The two operations rotate the 
input state towards         by an 
angle  given by:

w
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Grover’s Algorithm

.

.

.

ˆ
GUˆ

MU

.

.

.

H
H
H
H

H

0
0
0
0

0

ˆ ˆ2 1GU s s ˆ 1̂ 2MU w w 

ˆ ˆ cos sin '
ˆ ˆ ' sin cos '
G M

G M

U U w w s

U U s w s

 

 

 

   

 

0 0 1ˆ cos sin
1 1 0
1 0 1ˆ sin cos
0 1 0

R

R

  

  

     
      

     
     

      
     

Rotation by 



1
2 1sin 1
2

N

N  


  

w

's

out

in
2 1 1'

2 2

N

in N N
s w


 
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Grover’s Algorithm

.

.

.

ˆ
GUˆ

MU

.

.

.

Iterate k times:

 
 

ˆ ˆ cos sin '

ˆ ˆ ' sin cos '

k
G M

k
G M

U U w k w k s

U U s k w k s

 

 

 

 

     2 1 1ˆ ˆ ˆ ˆ ˆ ˆ'
2 2

2 1 1 2 1 1                     cos sin ' sin cos
2 22 2

Nk k k
G M G M G Min N N

N N

N NN N

U U U U s U U w

k k s k k w



   


 

          
   
   

k
w

's

out

out

in
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Grover’s Algorithm

.

.

.

ˆ
GUˆ

MU

.

.

.

Iterate k times:

  2 1 1 2 1 1ˆ ˆ cos sin ' sin cos
2 22 2

N Nk
G Mout in N NN N

U U k k s k k w     
           
   
   

k
w

's

Choose number of iteration k such that:

2

sin 1

2
2 2
2 1

N
N

N

k

k

k






 




 

 




~out w

out

in

out
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Grover’s Algorithm

Suppose the memory capacity is 2N ~ 1000 Tera Words (N ~50)

Suppose it takes a 1 micro-sec for the UM operation and 1 micro-sec for the UG operation

Then:

Searching through the memory bank with nearly 0% probability of error will require just 
~210 seconds

Quantum memory bank

ˆ
MU

…
.

…
.

…
.

~out w

ˆ
GU

10010011 ….01
Data

Classical memory search time:

Quantum memory search time: ~ 2N

~ 2N
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Classical Information in Quantum States
Consider a quantum system whose states belong to a N-dimensional Hilbert space with 
the following basis states:

Any quantum state of the system can be written as:
1

1̂
N

j j j k jk
j

e e e e 


 

1

N
j j

j
a e


 



If Alice wants to encode classical information in bits in the quantum state        , and 
then send the quantum state         to Bob, how much information in bits can Alice send 
to Bob which Bob can gain by making the best possible measurements on        ?




01001100 …..



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Classical Information in Quantum States: Alice’s Coding

010011001 …..




Suppose Alice chooses the following coding scheme:

Classical 
Info

000

001

010

011
100
101
110

111



1e

2e

3e

4e

5e

6e

7e

8e

Three classical bits are mapped to one of 
eight different states in the Hilbert space of 
the quantum system

8

1
1̂j j j k jk

j
e e e e 


 

Hilbert space dimension: N=8
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Classical Information in Quantum States: Bob’s Measurements






We assume that the quantum system has a CSCO and that each basis state          can 
be associated with a unique set of eigenvalues of the operators in the CSCO

So if each observable in the CSCO is measured for the quantum state         by Bob, 
then these measurements will let Bob figure out which one of the states          was 
sent by Alice

je


je

Measurement

010011001 …..

Result: 

For each state        sent by Alice, Bob obtains 3 bits of 
classical information after making his measurements


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Classical Information in Quantum States: Generalization
Consider a quantum system whose states belong to a N-dimensional Hilbert space with 
the following basis states:

Any quantum state of the system can be written as:
1

1̂
N

j j j k jk
j

e e e e 


 

1

N
j j

j
a e


 



If Alice wants to encode classical information in bits in the quantum state        , and 
then send the quantum state         to Bob, how much information in bits can Alice send 
to Bob which Bob can gain by making the best possible measurements on        ?




01001100 …..




Answer:

Measurements on the state         will give Bob  log2(N)  bits of classical information 

Therefore, a state in a 2-dimensional Hilbert space (i.e. a qubit) carries just one bit of 
classical information
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Quantum Superdense Coding

Question: Can Alice send Bob more than one bit of classical information by sending 
just one qubit? 
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Suppose Alice and Bob, on 
distant planets, share an 
entangled qubit pair:

1 0 0 1 1
2 A B A BS    

A B

Quantum Superdense Coding: Alice’s Local Operations

Alice’s Classical 
Information

Alice’s Local Operations

00

01

10

11

X

Z

Y

1 0 0 1 1
2 A B A B  

1 0 0 1 1
2 A B A B  

1 1 0 0 1
2 A B A B  

1 0 0 1 1
2 A B A B  

1 0 0 1 1
2 A B A B   

1 0 0 1 1
2 A B A B   1 0 0 1

2 A B A B
i   

1̂
1 0 0 1 1
2 A B A B  

A A

A A

A A

A A
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Quantum Superdense Coding: Bob’ Local Operations

A

B

Alice then sends qubit to Bob

Bob uses a reverse Bell circuit 
on both the qubits

A

B

H
Alice’s 

Classical 
Information

Bob’s Local Operations

1 1 0 0 1
2 A B A B  

1 0 0 1 1
2 A B A B   

1 0 0 1
2 A B A B
i   

1 0 0 1 1
2 A B A B   0 0A B

1 1A Bi

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

0 1A B

1 0A B

00

01

10

11

A

B
Reverse Bell Circuit

Alice is able to 
send two classical 
bits of information 
by sending just 
one qubit by using 
the entangled 
resource !!!
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Quantum Parallelism and the Deutsch Algorithm
Suppose we have a classical function of one input classical bit: 

x  .F  F x

There are four possibilities for the function F: 

   
   
   
   

0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1

F F
F F
F F
F F

 

 

 

 

Constant function 

One-to-one function 

Constant function

One-to-one function 

Question: Given a function black box, how many times do we need to evaluate 
the function F(.) to figure out if the function F(.) is a constant or a one-to-one 
function??

Answer: At least two times! Once with a “0” input and once with a “1” input. 
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Quantum Parallelism and the Deutsch Algorithm
A

B
Ax

By

F Ax

  By F x

Suppose we have a two-qubit unitary quantum gate that does not do anything to the A 
input qubit, but it changes the input B qubit such that it contains the XOR of B’s 
original value “y” and the function F(x), where “x” is the value of A 

 , 0,1x y 

Gate
Input Output
0 0A B

0 1A B

1 0A B

1 1A B

 0 0 0A BF

 0 1 0A BF

1 0 (1)A BF

1 1 (1)A BF
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Quantum Parallelism and the Deutsch Algorithm

Measurement

H

H H
A

B

1 A

0 B

1 0A B

1 0 1 0 1
2 A A B B        

       1 0 0 0 0 1 0 1 0 1 1 1 1
2 A A A AB B B BF F F F        

Suppose F is a constant then the above state is one of the following two:
1 0 0 0 1 1 0 1 1
2 A B A B A B A B     

Suppose F is a one-to-one then the above state is one of the following two:
1 0 0 0 1 1 1 1 0
2 A B A B A B A B     

F
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Quantum Parallelism and the Deutsch Algorithm

Measurement

H

H H
A

B
Output

Suppose F is a constant then the output is one of the following two:
10 0 1
2A B B    

Suppose F is a one-to-one then the output is one of the following two:
11 0 1
2A B B    

Therefore, if a measurement of qubit A at the end yields “1” then F is one-to-one, 
otherwise F is a constant

It follows that quantum mechanics allows one to determine if a function is a constant 
or one-to-one using only a single evaluation of the function

F1 A

0 B
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Quantum Parallelism and the Bernstein-Vazirani Algorithm
Suppose we have a classical function of N classical input bits and one output bit: 

1x

 .F
 1 2 3

1
, , .... mod 2

N
N j j

j
F x x x x s x



 
  
 2x

3x

Nx

Question: Given a function black box, how many times do we need to evaluate the 
function F(.) to figure out the function (i.e. figure out the string                             ) 

Answer: At least N times! Each time with one of the following inputs:

1 2 3, , .... Ns s s s

1

2

3

1
0
0

0N

x
x
x

x

   
   
   
   
   
   
     

 

1

2

3

0
1
0

0N

x
x
x

x

   
   
   
   
   
   
     

 

1

2

3

0
0
1

0N

x
x
x

x

   
   
   
   
   
   
     

 

1

2

3

0
0
0

1N

x
x
x

x

   
   
   
   
   
   
     

 

 0,1js 
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A1
11 Ax

By

11 Ax

Suppose we have a (N+1)-qubit unitary quantum gate that does not do anything to the 
input A qubits, but it changes the input B qubit such that it contains the XOR of B’s 
original value “y” and the function 

 , 0,1jx y 

Quantum Parallelism and the Bernstein-Vazirani Algorithm

A2
22 Ax

22 Ax

AN
NN Ax

NN Ax

F

 1 2, ,... N By F x x x
B

 1 2, ,... NF x x x
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A1
1

1 A

0 B

A2
2

1 A

AN1
NA

F

 1 2, ,... N By F x x xB

Quantum Parallelism and the Bernstein-Vazirani Algorithm
H

H

H

H

H

H

H

A measurement of all qubits A at the end yields the string

It follows that quantum mechanics allows one to determine the string                     
using only a single evaluation of the function !! This is N times faster than the best 
classical algorithm!

1 2 3, , .... Ns s s s

1 2 3, , .... Ns s s s

1s

2s

Ns


