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Lecture 2

A Primer on Wave Phenomenon

In this lecture you will learn:

• Waves and wave motion

• Wave equations

• Wave properties (wavelength, wave velocity, wave dispersion, wave frequency, etc)

• More wave properties (interference) 
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A Word on Notation

xe
ye

ze

Coordinate system and unit vectors:

Vectors:

x x y y z zA A e A e A e  
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Basic Wave Motion

v



x

Consider this wave moving in the +x-direction:
The wave travels a distance equal to one wavelength in one time period T

Basic relation for wave motion: vf 

v =  velocity of wave propagation
 =  wavelength of the wave
f =  frequency of the wave
T = period = 1/f

 ,U x t

 f
T

v 
time

distance  velocity
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1D Wave Equation
Most common linear waves are described by a differential equation that is second 
order in space and second order in time:

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

Any function in which position x and time t come in the form of x ± vt , e.g. f(x-vt) , 
will satisfy the wave equation

   ,U x t f x vt 

   , 0U x t f x 

   ,U x t f x vt 

v

f (x)

f (x-vt )
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3D Wave Equation

   2
2

2 2
, , ,1, , , U x y z t

U x y z t
v t


 



Most common linear waves are described by a differential equation that is second 
order in space and second order in time:

Reality of the wave amplitude, time reversal 
symmetry of basic physics, and isotropy of 
space, ensure that the above equation is very 
general

   
2 2 2

2
2 2 2, , , , , ,U x y z t U x y z t

x y z

   
        

In case you have forgotten your vector calculus:

   , , , , , ,x y zU x y z t e e e U x y z t
x y z

   
       

Laplacian

Gradient

In 1D:
   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

v
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Example: Sound Waves in Solids
Consider a volume x y z inside a solid material of density :

x



y

z

As a result of a wave passing through the solid medium in the x-direction, the indicated 
volume is displaced by an amount U from its equilibrium position

U is a function of position and time:

U

 , , ,U x y z t

x

x x x x x 

 ,U r t


or x y zr xe ye ze  
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Sound Waves in Solids

Newton’s second law states that:

F = ma

We want to apply the second law to the 
volume indicated

Velocity of the volume: 

   2

2
, , ,U x y z t

ma x y z
t




   


 , , ,U x y z t
t




Acceleration of the volume:  2

2
, , ,U x y z t
t





Therefore:

Next, we need to find the force acting on this volume!
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Sound Waves in Solids

Force in an elastic medium is proportional to the 
amount of stretching or strain (Hooke’s Law)

What if take the force to be proportional to U ??

Will not work – because what if the volumes before 
and after are also displaced by the same U !

We write the force F as the difference of the forces on the front and back facets:
       U x x U x U x U x x

F K y z K y z
x x

        
            

K is an elastic constant of the material with units of N/m2

       

 2

2
, , ,

U x x U x U x U x x
x x

F K y z x
x

U x y z t
K y z x

x
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Sound Waves in Solids
So Newton’s second law then becomes:

     

   

   

2 2

2 2

2 2

2 2

2 2

2 2 2

, , , , , ,

, , , , , ,

, , , , , ,1

F ma

U x y z t U x y z t
K y z x x y z

x t
U x y z t U x y z t

Kx t
U x y z t U x y z t

x v t







 
       

 

     
  

 
 

 

This is a wave equation!
Its solutions describe acoustic 
waves propagating in the 
material

The wave velocity v is:
Kv




More generally:    2
2

2 2
, , ,1, , , U x y z t

U x y z t
v t
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Example: Electromagnetic Waves
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Maxwell’s equation for electromagnetism also allow for electromagnetic waves

Coupled equations in Free-space

  2
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, , ,1, , ,

EE
c t

EE E
c t

E x y z t
E x y z t

c t


    




      




  





 


 Equation for a wave traveling 

at the speed c (speed of light)

m/s1031 8
oo

c


Start by taking the curl of the first equation on both sides and  then use the second 
equation on the LHS:

0

Ampere’s Law

Faraday’s Law

Divergence of the electric field is 
zero in the absence of charges
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Basic Wave Motion - I
Consider a simple 1-D wave equation:

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

Any function in which position x and time t come in the form of x ± vt , e.g. f(x-vt) , 
will satisfy the wave equation

   ,U x t f x vt 

   , 0U x t f x 

   ,U x t f x vt 

v

f (x)

f (x-vt )
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Basic Wave Motion - II

Consider a simple 1-D wave equation:

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

The most commonly used solutions are sinusoids, for example:

   2, cosoU x t U x v t


   
 

This solution represents a wave that:

i) Has wavelength 

ii) Is moving in  the +x-direction

iii) The velocity of the wave is v 

x

v
oU

Any function in which position x and 
time t come in the form of x ± vt , e.g. 
f(x-vt) , will satisfy the wave equation
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Basic Wave Motion - III

v



x

Consider this wave moving in the +x-direction:
The wave travels a distance equal to one wavelength in one time period T

Basic relation for wave motion: vf 

v =  velocity of wave propagation
 =  wavelength of the wave
f =  frequency of the wave
T = period = 1/f

 ,U x t

 f
T

v 
time

distance  velocity

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

   2, cosoU x t U x v t
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Basic Wave Motion - IV
   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

   2, cosoU x t U x v t


   
 



x

v
oU

2 2coso
vU U x t 

 
   
 

 2cosoU U x v t


   
 

The sinusoidal solution,

can also be written as:

Define:

2

k and 2 2v f 


 

 cosoU U kx t 

To get: Basic dispersion relation for wave motion:

vf  22 f v


 kv 

(wavevector = k) (radial freq = )
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Basic Wave Motion: Dispersion

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

 cosoU U kx t 

Take the solution:  cosoU U kx t 

And plug it into the wave equation:

   
2

2
2

2
2

2

cos coso ok U kx t U kx t
v

k
v

kv

 





    

 

  This is the dispersion relation of the wave!

Dispersion relation of a wave is the relationship 
between the frequency  and the wavevector k

The dispersion is linear in this case – meaning the 
frequency and the wavevector are linearly related
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Basic Wave Motion: Complex Notation

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

 cosoU U kx t 

We can also write the solution as a complex exponential – for CONVENIENCE only:

     , cos Re ikx i t
o oU x t U kx t U e e    

With a little abuse of notation one often writes the solution simply as:

 , ikx i t
oU x t U e e 

But it is understood that the real part is supposed to be taken since U(x,t) represents 
a real physical quantity (physical quantities are always real – not imaginary)
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Some Useful Formulas

Consider the exponential function:
ikxe

Then note the following relations:

       

2
2

2

ikx ikx

ikx ikx

ikx ikx ikx ikx

e ik e
x

e k e
x

f x
e f x ik e f x e e ik f x

x x x
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Some Useful Formulas
Now consider the following exponential function in 3D:

.x y zi k x k y k z ik re e
    

  x x y y z z

x y z

k k e k e k e

r xe ye ze

  

  





Then note the following:

 . . . .ik r ik r ik r ik r
x y z x x y y z ze e e e e i k e k e k e e ik e

x y z
   

           

      

 
2 2 2

2 . . 2 2 2 . . 2 .
2 2 2 .ik r ik r ik r ik r ik r

x y ze e k k k e k k e k e
x y z

   
                

         

   . .ik r ik re f r e ik f r         

    

Position vector



ECE 3030 – Summer 2009 – Cornell University

Basic Wave Motion: Waves in 3D and Wave Dispersion

   2
2

2 2
, , ,1, , , U x y z t

U x y z t
v t


 



   
2 2 2

2
2 2 2, , , , , ,U x y z t U x y z t

x y z

   
    

    

Solution in 3D for a wave moving in the direction of wavevector is:

     
 .

, , , , cos .

                   Re

o

ik r i t
o

U x y z t U r t U k r t

U e e 





  


 

 

   
 

2
2

2 2

2

2

2 2 2 2

1

. cos . cos .

.

o o

UU
v t

k k U k r t U k r t
v

k k v k v

k v

 






 



           

  

 

    

 

The solution can only be correct if:   = k v

k


2 2 2 2.
x x y y z z

x y z

x y z

k k e k e k e

k k k k k k

r xe ye ze
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Basic Wave Motion: Waves in 3D

     
 .

, , , , cos .

                   Re

o

ik r i t
o

U x y z t U r t U k r t

U e e 





  


 

 

z

x

y

k




222
22

zyx kkkk 




2 2 2 2.
x x y y z z

x y z

x y z

k k e k e k e

k k k k k k

r xe ye ze
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Basic Wave Phenomena: Interference

1r


2r


Waves interfere!

Points where the waves add in phase,               has the largest swing (anti-nodes)
Points where the waves add out of phase,                has no swing (node)

 ,U r t


 ,U r t


Interference of light waves
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Basic Wave Phenomena: Interference

1r


2r


 
        1 2

1 2
. .

. .

1 2
, Re Re

ik r r ik r r
ik r r ik r ri t i t i t i to

o
Ue eU r t U e e e e e e

r r r r r
   

 
    

      
   

    
    

   

     

      

1 2

1 2

2 22 . .
2

2 2. . 2
1 22

,

              2 1 cos .

ik r r ik r ri t i to

ik r r ik r ro
o

UU r t e e e e
r
U e e U k r r
r
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Wave Equation from Wave Dispersion: A Reverse Engineering Example

Supposing someone tells you that he has a special kind of a medium in which the 
wave looks like:

 , ikx i t
oU x t U e e 

And that the relation between the frequency and the wavevector (or the relationship 
between the frequency and the wavelength) of the wave are experimentally found to 
be:

2
2 2ak a 


    
 

Question: Find the wave equation!

I know that:
   

   

, ,

, ,

ikx i t
o

ikx i t
o

U x t U e e ikU x t
x x

U x t U e e i U x t
t t



 





 
 

 
 

  
 

So to get                 the wave equation must look like (verify!!) :2ak 

   
2

2
2, ,i U x t a U x t

t x
 

 
 

First order in time and 
second order in space
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Where in Space is the Wave?

When we write a wave solution of the form:

 , ikx i t
oU x t U e e 

The wave is spread over All space

It is not localized in an particular location

Clearly this does not correspond to waves that you see in your daily lives

How do we localize waves?

x

   , Re ikx i t
oU x t U e e Or if  you prefer:
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Superposition Principle for Waves

Most simple wave equations, such as:

are linear differential equations. This means that a superposition (i.e a sum) of 
functions that satisfy the wave equation will also satisfy the wave equation!

   2 2

2 2 2
, ,1U x t U x t

x v t
 


 

Example: 

The function                      satisfies the above wave equation for                     

And the function                        also satisfies the above wave equation for

Then the supersposition function (with two arbitrary constants A1 and A2):

will also satisfy the wave equation   

1 1ik x i te e 
1 1k v 

2 2ik x i te e 
2 2k v 

1 1 2 21 2
ik x i t ik x i tA e e A e e  
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Wave Packets and Group Velocity

One can always superpose waves of different frequencies to create a localized 
wave packets of any shape

     
0

, Re
2

ik x i tdU x t U e e  



 

  
 

This looks like a Fourier Transform

x

U(x,t) envelope



U()

o

 
2

o
ok







Group velocity = velocity at which the wave packet moves =>  1

og

k
v  
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Wave Packets and Group Velocity
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U(x,t) envelope



U()

o

 
2

o
ok







Group velocity = velocity at 
which the wave packet 
moves:

 1

og

k
v  


 






Taylor expand:

     o o
o

kk k
 

   
 


  



To get:


