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Lecture 19

Light-Matter Interaction and Optical Transitions – II
Time-Dependent Perturbation Theory and Fermi’s Golden Rule

In this lecture you will learn:

• Time-dependent perturbation theory
• Transition rates
• Fermi’s Golden Rule
• Stimulated emission and absorption of light
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Optical Transition to a Continuum of Final States
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What if the upper state is not 
an isolated discrete energy 
level but a continuum of 
energy levels ? 

How to deal with the continuum of the 
upper energy states?

Will one still see Rabi oscillations?
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Energy Bands in Crystalline Solids
Silicon lattice GaAs lattice GaN lattice
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Energy Bands in Crystalline Solids

Crystalline materials have electron energy eigenstates 
distributed among different energy bands

An energy band is a collection of energy eigenstates 
whose energies are very close such that these energy 
eigenstates can be thought of as forming a continuum

Energy band

Energy band

Energy band

Energy

There are energy gaps between energy bands that 
are called bandgaps

Bandgap

Bandgap

Conduction energy band (empty)

Valence energy band (full of electrons)

Core energy band (full of electrons)

Energy

Bandgap ~ 1.1 eV

Bandgap

Energy bands 
in Silicon
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Optical Transitions in Crystalline Solids
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Energy band

Energy band

Energy band

Energy

Bandgap

Bandgap



How to deal with the continuum of the 
energy states in optical transitions?
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Density of States (DOS) of Energy Bands

Energy band

Energy band

Energy band

Energy

Bandgap

Bandgap

EConsider a small interval         of energy 
in an energy band at energy E

Question: How many energy eigenstates 
are in this energy interval?

Answer:
The number of energy eigenstates in a 
small energy interval        equals:

E

 D E E

E

The function D(E) is the density 
of states (DOS) function of the 
energy band

DOS function equals the number 
of energy eigenstates with 
energy E in an energy band per 
unit energy interval

E
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Density of States (DOS) of Energy Bands and Counting

Energy band

Energy band

Energy band

Energy

Bandgap

Bandgap

EE

The number of energy eigenstates in a 
small energy interval        centered 
around energy  E equals:

 D E E

E
Energy EB

Energy EA

Suppose we need to count all the energy 
states between energy EA and energy EB , as 
shown

Answer:

 

 

All levels with energy between  and 

B

A

A B
m

E

E

E E

dE D E



 

Energy band

Energy EB

Energy EA

N
.
.
3 
2
1



ECE 3030 – Summer 2009 – Cornell University

Light-Matter Interaction in Energy Bands 

( , )E r t
 

( , )H r t
 





Consider an electron in a solid subjected to a time-
dependent perturbation because light is passing 
through the solid

Question: What happens to this electron??

Assumption: 
The perturbation is weak

     
2ˆ ˆ ˆˆ .

2
pH t V r qE t r
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The Hamiltonian is:
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Time-Dependent Perturbation Theory





Energy

     
2ˆ ˆ ˆˆ ˆcos .
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Light polarization 
direction unit vectorˆ

oH
Lets generalize a bit:

   ˆ ˆ ˆ ˆ ˆ2 cos i t i t
o p o pH t H H t H H e e        

Original Hamiltonian

Perturbing 
Hamiltonian’s 
operator part

ˆˆ ˆ.
2
o

p
EH q n r 



For light-matter 
interaction:

Makes the 
electron go 
down in 
energy

Makes the 
electron go 
up in energy

   ˆ, coso oE r t nE t
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Time-Dependent Perturbation Theory





Energy
The full time-dependent Hamiltonian is:

   ˆ ˆ ˆ2 coso pH t H H t 
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Energy eigenstates:
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ˆ
oH Matrix elements of the perturbing Hamiltonian

ˆ
2
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qE d
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Time-Dependent Perturbation Theory





Energy

     ˆt
i H t t

t










Need to solve:

Subject to the boundary condition:   00t e   0e

Assume a solution of the form:

   
jE

i t
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j
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Boundary 
condition

And plug into the Schrödinger equation:
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Time-Dependent Perturbation Theory
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Multiply both sides from the left by              (where m ≠ 0 ) : me
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Boundary 
condition
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Keep only the j=0 term Assume cj=0 ~1
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0ˆ2cos
mE E

i tm
m p

c t
i t e H e e

t










For times t not too large,





Energy

0e

This equation shows that the coefficient cm(t )  is increasing with time!
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Time-Dependent Perturbation Theory: Upward Transitions 



Energy

0e

me
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Resonant term Non-resonant term

Ignore

Focus on electron going up in energy (i.e. assume Em > E0 ):

The non-resonant term is oscillating fast as a function of time and will not contribute 
much if the RHS is integrated wrt time to get the coefficient cm(t ) 
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mE E
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c t i e H e e
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Therefore, we can write:

Resonant term only



ECE 3030 – Summer 2009 – Cornell University

   

 
 

 

 

 

 

 

 

 

0

0

0

0

'
0

0

0

20
0

0
22 2

02
0

ˆ

ˆ '

sin
2ˆ

2

sin
21 ˆ

2

m

m

m

E E
i tm

m p

E Et i t
m m p

m
E E

i t
m m p

m

m

m m p
m

c t i e H e e
t

ic t e H e dt e

E E
t

ic t e H e t e
E E t

E E
t

c t e H e t
E E t














 


 


 



 



   

   
  
       
 
  

   
  
      

 


























2








Energy

0e

me
Time-Dependent Perturbation Theory: Upward Transitions 

Now we integrate wrt time from t=0 to t :



ECE 3030 – Summer 2009 – Cornell University

 

 

 

2
0

22 2
02

0

sin
21 ˆ

2

m

m m p
m

E E
t

c t e H e t
E E t





   
  
     
 
  









Energy

0e

me

mE0E  

2
t
  1Integrated area = 2

t
 

   
22 2

0 02
1 2ˆ

m m p mc t e H e t E E
t


      
 



   
2

2
0 0

2 ˆm
m p m

d c t
e H e E E

dt
     


This function can be 
approximated as a delta 
function in energy !

Time-Dependent Perturbation Theory: Upward Transitions 

Plot the bracketed part wrt
to energy Em :
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Time-Dependent Perturbation Theory: Upward Transition Rates



Energy

0e

me
   

2
2
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m p m
d c t

e H e E E
dt

     


represents the rate of increase of the probability in the

upper level m

  2
md c t
dt

The total transition rate for the electron to go to the higher energy states is given by:
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DOS evaluated at the 
electron final energy

Fermi’s Golden Rule

Replace summation 
over “m” by an 
integral over energy
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Time-Dependent Perturbation Theory: Downward Transition Rates



Energy
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Resonant termNon-resonant term

Ignore

Focus on electron going down in energy now 
(i.e. assume Em < E0 ):

The total transition rate for the electron to go to the lower energy states is given by:
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DOS evaluated at the 
electron final energy

Fermi’s Golden Rule
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Exponential Decay of the Initial State 





Energy

0e

With little extra work one can also find out how the probability 
of the electron being in the initial state is behaving with time:

     
2

20
0

d c t
R R c t

dt
    

Solution, subject to the boundary condition                          , is: 0 0 1c t  

   2
0

R R tc t e  


The probability of the electron being in the initial state decays exponentially with 
time and the decay constant is related to the transition rates to the higher and 
lower energy states 

Notice also the probability conservation:    
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Optical Transition Rates: Fermi’s Golden Rule
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Stimulated Absorption of Light by an Electron:

Stimulated Emission of Light by an Electron:

Stimulated 
Absorption

Stimulated 
Emission

d = dipole matrix element 
between the initial and 
final states of the 
electron





ECE 3030 – Summer 2009 – Cornell University

Light Absorption in Crystalline Solids

Energy

Bandgap ~ 1.4 eV

Bands in GaAs in thermal equilibrium
Energy

Only upward 
transitions are 
possible

Stimulated 
Absorption
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Bandgap
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Light Amplification by Stimulated Emission of Radiation (LASER)

Energy

Bandgap ~ 1.4 eV

Bandgap

Bands in GaAs in thermal equilibrium
Energy

Bands in GaAs out of thermal equilibrium

Population 
inversion

Stimulated 
Emission
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Energy

Bands in GaAs out of thermal 
equilibrium

Population 
inversion

Stimulated 
Emission( , )E r t

 

( , )H r t
 

Light Amplification by Stimulated Emission of Radiation (LASER)

Photon 
amplification
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Appendix: Absence of Rabi Oscillations in Transitions to a Continuum

We start from the general equation derived earlier:




0e
 

    ˆ2cos
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Multiply both sides from the left by              (where m ≠ 0 ) : me

     
 

0 0

0 0ˆ
m mE E E E
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c t i e H e e e c t
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Multiply both sides from the left by            in the general equation to get: 0e

     
 

0 0
0

0
0

ˆ
m mE E E E
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m

c t i e H e e e c t
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(1)

(2)

Now we will solve (1) and stick its solution in (2)

Energy
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0e

Energy

Solution of (1) by direct integration is:
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ˆ ' '
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Substitute the above in (2) to get (and ignoring some unimportant terms):
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Now change the order of time integration and summation over “m“ and then convert 
the summation into an integral over energy using the density of states D(E ) : 
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Appendix: Absence of Rabi Oscillations in Transitions to a Continuum

The above is an equation for             alone! 0c t
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Note that the integration over time implies that in the first term (or second term) 
inside the brackets, energies that matter are those for which 

Appendix: Absence of Rabi Oscillations in Transitions to a Continuum
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So if               and                         are not strong functions of energy around the 
energies                        then one may write:                    
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Carry out the time integrations and use (3) to get:
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Now note that: 
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Appendix: Absence of Rabi Oscillations in Transitions to a Continuum
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Appendix: Absence of Rabi Oscillations in Transitions to a Continuum

0e

Energy

R

R

     0
0

1
2

c t
R R c t

t  


  


Which implies:

     
2

20
0

c t
R R c t

t  


  


This shows that the probability of the electron remaining in the initial state decays 
exponentially and does not exhibit any Rabi oscillations!

So why do we not see Rabi oscillations? Why doesn’t c0(t) become large ever again? 
The answer lies in these two equations we had written down earlier:
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(1)

(2)

Because different energy levels Em have different detunings , different 
coefficients cm(t) acquire different relative phases by (1). Consequently, they interfere 
destructively in (2) and, therefore,  c0(t) never gets regenerated after it has decreased 
from its initial value

 0mE E


