Lecture 19

Light-Matter Interaction and Optical Transitions — |l
Time-Dependent Perturbation Theory and Fermi’s Golden Rule

In this lecture you will learn:

* Time-dependent perturbation theory

* Transition rates ::
* Fermi’s Golden Rule Stimylated Ao

« Stimulated emission and absorption of light Abs°’ lon N

®
ho
= Stimulated

Emission




Optical Transition to a Continuum of Final States

What if the upper state is not
an isolated discrete energy
level but a continuum of
energy levels ?

How to deal with the continuum of the
upper energy states?

Will one still see Rabi oscillations?




Energy Bands in Crystalline Solids

Silicon lattice GaAs lattice GaN lattice




Energy Bands in Crystalline Solids
+Energy

Crystalline materials have electron energy eigenstates
distributed among different energy bands ]- Energy band

An energy band is a collection of energy eigenstates Bandgap
whose energies are very close such that these energy
eigenstates can be thought of as forming a continuum

]' Energy band

There are energy gaps between energy bands that IBandgap
are called bandgaps

]- Energy band

Energy bands Energy

in Silicon ]- Conduction energy band (empty)

lBandgap ~1.1eV

]- Valence energy band (full of electrons)

A

Bandgap

]- Core energy band (full of electrons)




Optical Transitions in Crystalline Solids
s+Energy

]- Energy band

#iw |Bandgap

]- Energy band
IBandgap
\ ]' Energy band

energy states in optical transitions?

E(r
Ft)
How to deal with the continuum of the




Density of States (DOS) of Energy Bands
Energy

Consider a small interval AE of energy
in an energy band at energy E

Question: How many energy eigenstates
are in this energy interval?

Answer:
The number of energy eigenstates in a
small energy interval AE equals:

D(E)AE

I

The function D(E) is the density
of states (DOS) function of the
energy band

DOS function equals the number
of energy eigenstates with
energy E in an energy band per
unit energy interval

Wy -

A

AE

l

|

]- Energy band

IBandgap

]' Energy band

IBandgap

]- Energy band




Density of States (DOS) of Energy Bands and Counting

The number of energy eigenstates in a
small energy interval AE centered
around energy E equals:

D(E)AE

A

W -

Suppose we need to count all the energy
states between energy E, and energy E;, as
shown

Energy Eg

Energy band

Enerqy E
Answer: 9y =a

Energy

A

AE

Energy Eg

| e

TIE\

Energy band

Bandgap Energy E,

]- Energy band

IBandgap

]' Energy band

¥ {All levels with energy between E, and Eg}

m

Ep
= | dE D(E)




Light-Matter Interaction in Energy Bands

Consider an electron in a solid subjected to a time-
dependent perturbation because light is passing
through the solid

Question: What happens to this electron??

Assumption:
The perturbation is weak \\

The Hamiltonian is:

N N2 ~ — ~
H(t)=2p—m+V(F)—qE(t).F




Time-Dependent Perturbation Theory

Em‘e‘rgy

—qE, cos(wt)A. F

. I

Light polarization
Ho direction unit vector

Lets generalize a bit:
For light-matter

A(t)= A, +2A, cos(ot) = Ay + A, [ e + et ) - ereeton,
T Hp=—q7n.r

Original Hamiltonian

Perturblng

Hamiltonian’s Makes the Makes the

operator part electron go electron go
down in up in energy
energy




Time-Dependent Perturbation Theory
En(‘e‘rgy

The full time-dependent Hamiltonian is:

H(t)=H, +2H, cos(wt)

Energy eigenstates:

~n

Matrix elements of the perturbing Hamiltonian

- qE dk'
{ (oklfp[ej)=-5

|
H,




Time-Dependent Perturbation Theory

Need to solve: Energy

O fiey o)

Subject to the boundary condition: ‘y/(t = 0)> = |eo>

Assume a solution of the form:

_.i Boun_d_ary _ _
VO =% ¢j(t)e 1 '|e) “ndion, (E=0))=[e0
J

= Cl(t = 0) = 510
And plug into the Schrodinger equation:

mg\,,f(t)>=ﬂ(t)\w(t)>

t ej> = [I-AIo +2cos(mt)lflp]z cj(t)e_i h
J

ey zsc,a//e>

+ 2cos(a>t)z; C; (t)e_




Time-Dependent Perturbation Theory
Enr-irgy

) i 2\ ‘ej>=2cos(a)t)z cj(t)e_i
J J

Multiply both sides from the left by <em | (where m#0) :

ae (t) (Ei~En)

in—237 =2cos(wt)X <em|l:lp‘ej>cj(t)e" h
ot J T ~ Boundary

condition

T

Keep only the j=0 term Assume Cj-, ~1 ‘V/(t _ 0)> — |eO>
For times t not too large,

_i(Eo_Em)t :>Cj(t=0)=5j0

.. oc, (t ~ .
lh%=2cos(a)t)<em|Hp|eo>e L

(Eo+ho-Em), (Eo—hm—Em)t'

—i —i

e

This equation shows that the coefficient c,(t) is increasing with time!



Time-Dependent Perturbation Theory: Upward Transitions
Enr-irgy

Focus on electron going up in energy (i.e. assume E,, > E;):

i _i(Eo+hco—Em)t ; (Eo- h/ E

OCp, (¢t i -
%m(t) )=‘g<em|Hp|eo> e ’ +ée

ot

Ignore

-\ l
Y | q J

Resonant term Non-resonant term

The non-resonant term is oscillating fast as a function of time and will not contribute
much if the RHS is integrated wrt time to get the coefficient c,(t)

Therefore, we can write:

(Eq +hco—Em)t

ocp, (t i ~ =1
%=‘g<em|"’p|eo>‘e ’ '
|

Resonant term only




Time-Dependent Perturbation Theory: Upward Transitions
Energy em>

Now we integrate wrt time from =0 to ¢ :




Time-Dependent Perturbation Theory: Upward Transitions

— 2 Ene“rgy e >
oin| (Eotho—Ep) =
27

(Eg +hw—Ep, )t

Plot the bracketed part wrt
to energy E,, :

This function can be
approximated as a delta
function in energy !

Integrated area =

E0+h(o

2%”5(50 +ha)—Em)}

A 2
m|Hpleo)| 8(Eq+ho—Ep)




Time-Dependent Perturbation Theory: Upward Transition Rates

, Energy em>
dic, (t) 2 n 2
= | nc;t | = hﬂ‘(em|Hp|eo>‘ 5(Eg +how—E,,)

ho

2
d‘cm (t)‘ represents the rate of increase of the probability in the
dt
upper level m

The total transition rate for the electron to go to the higher energy states is given by:

2
RT= % dlem (1) =
m=0 dt m=0

Replace summation

2 A 2
% ~|(em|Apleo)| 8(Eo + hor—Epp) ~Nover'mbyer

integral over energy

2 A 2
- | dE D(E) 7” (eg|Hpeo)| &(Eq+hw-E)

2
‘ Fermi’s Golden Rule

2 n
= D(Eo + h(t)) 77[‘<9E0+h(0 Hp |eo>

I

DOS evaluated at the
electron final energy




Time-Dependent Perturbation Theory: Downward Transition Rates
Enr-irgy

Focus on electron going down in energy now
(i.e. assume E,, < E;):

I _i(Eo+h§/15m)t

e/

Non-resonant term Resonant term

The total transition rate for the electron to go to the lower energy states is given by:

2
R\L= 3 d‘Cm(t)‘ —

27 - 2
m=0 dt mz;;o 7‘<em|HP|eo>‘ 5(E0_hG)—Em)

2 ~ 2
- | dE D(E) 7” (eg|A, |e0>\ 5(Eq —hw—E)

Fermi’s Golden Rule

DOS evaluated at the
electron final energy




Exponential Decay of the Initial State
Entirgy

With little extra work one can also find out how the probability

of the electron being in the initial state is behaving with time:

d‘czgt)‘ _ —(R T +R i«)‘co (t)‘z

Solution, subject to the boundary condition ¢, (t = 0) =1, is:

‘Co ( t)‘z _ e—(RT+R¢)t

The probability of the electron being in the initial state decays exponentially with
time and the decay constant is related to the transition rates to the higher and
lower energy states

2 2
Notice also the probability conservation: d‘co (t)‘ + ¥ d‘cm (t)‘ -0

= |eo (1) + 5 lem ()} =1




Optical Transition Rates: Fermi’s Golden I@Ie\

A
Stimulated h
\Ttl o

Stimulated Absorption of Light by an Electron:

2”\( em|H, |e0\ 5(Eo+ho—Ep)

Stimulatec
Emission

~ 2
fi <eE0+hco HP|eo>‘
qE,d 2

2

Stimulated Emission of Light by an Electron:

2”\( m|Hp |e0\ 5(Ey-ho—Ep,)

~ 2
7 <eEo—hco H, |eo >‘ d = dipole matrix element
between the initial and

qE, d 2 final states of the
2 electron




Light Absorption in Crystalline Solids

Bands in GaAs in thermal equilibrium
]_ Only upward = ]_
transitions are

ossible
[Bandgap~1.4 eV P imat %w\l Bandgap

s+Energy

2 A 2
RT= % %‘(em|HP|eo>‘ 5(Eq +ho-Ep)

m=0

‘2

2 ~
= D(Eo + ha)) 7”‘<9E0+hco Hp |eo>



Light Amplification by Stimulated Emission of Radiation (LASER)

Bands in GaAs in thermal equilibrium Bands in GaAs out of thermal equilibrium
s+Energy sEnergy

]' Population : ]'

inversion
Bandgap ~ 1.4 eV Stimulated

Emission




Light Amplification by Stimulated Emission of Radiation (LASER)

Bands in GaAs out of thermal
equilibrium

Population ]' Photon

inversion _ amplification
Stimulated

Emission

].
].




Appendix: Absence of Rabi Oscillations in Transitions to a Continuu

Energyl

We start from the general equation derived earlier:

E:

) hoj | ‘ej>=2cos(wt)z_ cj(t)e_i7tlflp‘ej>
j j

Multiply both sides from the left by <em | (where m#0) :

_ | _(Eotho-Ep), ~ _(Eo-ho-Ep) ]
nll) Lo liple)|e” 4 rel b e(n) ——

Multiply both sides from the Iéft by <eo | in the general equation Eo get:

_I(Em+hco—Eo)t _i(Em—ha;—Eo)t'

ocq (t i -
gt( )=m§0 —E<eo|Hp|em> e h +e h cm(t) ——(2)

Now we will solve (1) and stick its solution in (2)




Appendix: Absence of Rabi Oscillations in Transitions to a Continuu

Energy]|

Solution of (1) by direct integration is:

_(Eo +ha)—Em)t'

. . t _j _ ¢
cm(t)=—é<em\Hp\eo>(j)dt' e n co(t")

Substitute the above in (2) to get (and ignoring some unimportant terms):

_i(Em+hw—E0) (¢t _i(Em—ha)—Eo) (t-
h t+e h

K co(t')

o0cy (t 1 ~ 2t
oco(t) _ _ > h—2‘<eo‘Hp\em>‘ (j)dt' e

ot m=0

The above is an equation for Cy(t) alone!

Now change the order of time integration and summation over “m“ and then convert
the summation into an integral over energy using the density of states D(E) :

ocy(t) _
> jdt ‘[ dE D(E)—




Appendix: Absence of Rabi Oscillations in Transitions to a Continuu

aco (t) Idt'
ot

co(t')

Note that the integration over time implies that in the first term (or second term)
inside the brackets, energies that matter are those for which E = Ey — hw (or E = Ej + ho)

Soif D(E) and ‘(eo H,| eE>‘ are not strong functions of energy around the
energies E = E, + hw then one may write:

A 2 —I
D(E, —hw)‘(eo\Hp eEo_hw>‘ [dE e

+ D(Eq+ho)|(e| A,

_(E+ha)—Eo)

(t-t)

h




Appendix: Absence of Rabi Oscillations in Transitions to a Continuu

(E+hro-Eyg),, ..
R 2 —i (t-t")
D(Ey - 1o)|(e0|Hp |0g,-10)| JdE €

oco (t) _ —ifdt'

61‘ hz 0 _(E—ha)—Eo) cO (t )

" 2 —i (t-t")
+ D(E, +ha))‘<eo\Hp eE0+h(o>‘ [dE e n

Now note that:
_i(Eiha)—Eo)
[dE e h

(t-t’)

=27hs(t-t")

Carry out the time integrations and use (3) to get:

oco(t)
ot

. 2 ~ 2
[%D(Eo—hw)‘@o\"’p eEO_ha,>‘ +%D(Eo+hw)‘<eo‘Hp‘eEo+hw>‘ }Co(t)

= —%(R¢ +Ry)co (1)




Appendix: Absence of Rabi Oscillations in Transitions to a Continuum

(0 Energy]| =
aCO t 1
Tz_E(R‘L +RT)C0(t) \ RT
Which implies: ®0/e
2
dlco (t)] 2 R

5= ~(RU+Rr)lco(2) L

This shows that the probability of the electron remaining in the initial state decays

exponentially and does not exhibit any Rabi oscillations!

So why do we not see Rabi oscillations? Why doesn’t c,(f) become large ever again?

The answer lies in these two equations we had written down earlier:

ocm(t) i, - _i(Eorho-Em), _(Ep-ho-Ep),
’g, =—g<em\"’p\eo> e h +e h co (1) (1)
, (Em+ho—-Eg) (Em-ho—Eq)
aco (t . _j(Emtho-Ey)  _(Em-ho-Ep),
CST()zméo —é<eo‘Hp‘em>|:e h +e h ]cm (1) — »(2)

Because different energy levels E_ have different detunings (Emihw+Eo) , different
coefficients ¢, (f) acquire different relative phases by (1). Consequently, they interfere
destructively in (2) and, therefore, c,(f) never gets regenerated after it has decreased

from its initial value



