Lecture 18

Light-Matter Interaction and Optical Transitions - |

In this lecture you will learn:

Part I:

 Classical electrodynamics

» Gauge transformations
 Light-matter interaction Hamiltonian

Part ll:
e Electric-dipole Hamiltonian

* Transformation to a spin Hamiltonian
* Rabi oscillations
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Light-Matter Interaction

e Part | (for the self-reading of graduate students)
Classical and quantum physics of charged particles

Derivation of the electric-dipole Hamiltonian for light-matter interaction

e Part Il
Interaction of a TLS (an electron in an atom) with light




Part |



Quantum Commutation Relations: A Recap

In quantum mechanics we have for a particle:
I:Fk,ﬁj:l = ih5kl

This implies:

R Kinetic momentum
of the particle

FlBlv ()=

Kinetic energy of the particle in free-space:

H =

But what if the particle is charged? Do the above hold?




Classical Electrodynamics (Nothing to do with Quantum Physics)

Consider an electromagnetic wave travelling in free space:

-

E(r, Electromagnetic wave energy is:

— 3~ |1 = = 1 ~ . .~ .

r,t) [d°F 2 %o E(r,t).E(r,t)+E,uoH(r,t).H(r,t)
Electromagnetic wave momentum is:

Eollo] d°F E(F,t)x H(F,t)




Classical Electrodynamics

The electric and magnetic fields can be represented by scalar and vector potentials:

The vector and scalar potential description is redundant (we are representing 3
degrees of freedom with 4 degrees of freedom)

This means the description of electric and magnetic fields in terms of vector and
scalar potentials cannot be unique!




Gauge Transformations and Non-Uniqueness of
Electromagnetic Potentials

Suppose one had figured out the vector and scalar potentials such that:

OA(F,t .
%—V¢(r,t)

H(F,t)= ﬂiov x A(F,t)

Suppose, amid calculations, one decides to change the vector and scalar potentials
as follows:

E(F,t)=-

A . (r,t)= A(F,t)+ VF(F,t) )
new F(r,t) is any

Bnew (F>t) = #(r ,t) - %F(F, t) scalar function

One would still get the same physical electric and magnetic fields:

L 0A e (7.t ,
E(r,t)=- "e‘gt( )—V¢new(r,t)
1

H(F,t)= #—ov xA__ (F.t)
calar and vector potentials are not unique (they depend on the choice of gauge)!
nhysical measurable quantities should not depend on the choice of gauge




Classical Electrodynamics and Gauge Choice

The vector and scalar potential description is redundant (we are representing 3
degrees of freedom with 4 degrees of freedom)

We can tie up the extra degree of freedom by a assuming an arbitrary relation
between A(F,t) and ¢(F,t) called the gauge condition:

Coulomb Gauge:
V.A(F,t)=0 ) Ve will choose this gauge
Lorentz Gauge:

L 1 04(F,t)
V.A(r,t)+c2 py =0

Another Possible Gauge Choice:

¢(F,t)=0




\Classical Electrodynamics

Now consider a charged particle (charge = g) in an electromagnetic wave:

Particle kinetic energy is:

my(£).9 (1)
Electromagnetic wave energy is:
[d3F {% £, E(F,t).E(F,t)+ % u H(F,t).H(F, t)}

Total energy of the particle-field system is:

E;pra) = %m?(t).?(t) +qp(F(t),t)+[d°F {% g, E(F,t).E(F,t)+ % on:I(F,t).FI(F,t)}

Easy peasy !!




Classical Electrodynamics

Again consider a charged particle (charge = q) in an electromagnetic wave:

Particle kinetic momentum is:

. dr (t
mv (t)= (t)
dt
Electromagnetic wave momentum is:
eollo| d°F E(F,t)x H(F,t)
Total momentum of the particle-field system is:

. dr(t
Ptotal (t) =m d(t )
‘—'—’ l ) \ v J

Kinetic D

momentum of “-E Electromagnetic
the particle momentum of the wave

+ QA(F(t),t) + eopoldF E(F,t)xH(F,t)




Classical Electrodynamics
- dr(t . o .
Protar (t) = m d(t ) + qA(F(t),t) + Eollo d°F E(F,t)x H(F,t)
— ‘ , o ' )
Kinetic a%"i,)
momentum of v J e Electromagnetic
the particle \t’; .}‘ momentum of the wave

Define a canonical momentum of the particle as: \

= mv(t)=p(t)-qA(F(t),t) > Kinetic

momentum

B(t) =¥ () + A (7 (¢)1) \N?%\\&

Particle kinetic energy is:

- 2
p(t)—qA(r(t),t
1m\7(t).\7(t)=|:p() 9A( (1))
2 2m
Total particle energy (kinetic + potential) is:

= mo(0)9(0)  ab(F(0).1) - [ﬁ(t)_q:g(t),t)]

+q¢(7 (1))




Quantum Commutation Relations

p(t)=mv(t)+qA(F(t),t)

In imposing commutation relations, should we assume:

[rk’z;’;{] - 'hakl' X E(F) \
Or, should we assur::;emum
AN

Canonical
momentum

Turns out only the latter works!

=ih5kj I:ﬁk,ﬁj:l =0 ' I:m‘;k’m‘;f:l =

v (t)) = —v w(F,t) inqeyjs pioHs (F,t)
T

£123 =1 (fully antisymmetric) |
] Levi-Civita symbol
e.9.0 &123 = 1,613 =-16312 =1,




Time-Dependent Quantum Hamiltonian

Total classical particle energy (kinetic + potential) is:

[B(1)-dA(F ().0)]

2m

H=2my(6).9(t) +ag(7 (¢).t) = +qa(F (1).t)

The quantum Hamiltonian operator becomes:

" ga A2
~ 1 A A ~ I:ﬁ_qA(F!t)] ~
H(t)=5m\'/’.\7+q¢(f',t)= +q¢(F,t)

2m

The Hamiltonian operator is time-dependent!

We will now need to solve the time-dependent
Schrodinger equation:

O ey (o)




Time-Dependent Schrodinger Equation

We have:

O ey o)

Lnivlen_|
ot

But wait a minute
Jauge-dependent !!
oshow can the above Schrodinger equation be universally correct ??




Quantum States and Gauge Choice

5 T2
inov(rit) [7v_qA(r’t)}
ot 2m

Suppose we make a gauge transformation (in our heads):

Apew (7t) = A(F,t) + VF(F, 1) o
5 J F(r,t) isa
Frew (F,t) = 9(7,t) - — F(F.1) scalar function
And if we also assume that under this gauge transformation:
g = .
_ I—F(r,t) _ ,'EF .t
V/new(r’t)=e & V/(r’t) ‘Wnew(t)>=e h ( )‘W(t»
Then we get (after substituting the above in the Schrodinger equation at the top):
2
h = -
| AV G (7 t)]
.. OWnew (It [ i newir’ _ P _
ih ne;vt( ) = 2m V/new(r!t)+q¢new (r!t)V/new(r’t)

* Quantum states and quantum wavefunctions are gauge dependent !
» But the form of the Schrodinger equation is gauge independent !

. 2
* The probability density ‘!//(I’,t)‘ is also gauge independent !

—




Particle in a Potential Well (Atom) Interacting with Radiation

So we have:

+qg(Fot)y (7.0 +V (F)w(7.1)

— )
Scalar potential Atomic

of the wave potential well

Coulomb Gauge: V.Z\(F,t)




Particle in a Potential Well (Atom) Interacting with Radiation

.Z\(F,t) =A, cos(E.F = cot)

Assume that the potential well (atom) is
located at r =r, then at the location of
the atom:

A(F,t) =~ A(Fy,t) = A, cos(l?.Fo = a)t)

Then we can approximate the Schrodinger equation as (because the field is
pretty much uniform in space as far as the atom is concerned):

z hy_ A(7,,t) 2
ihawgt’t)=[' - } w(F,t)+V (F)y (F.t)




Particle in a Potential Well (Atom) Interacting with Radiation

2m
+V(F)y(F,t)

Now do a gauge transformation:
Apey (F,t) = A(F,t) + VF(F,t)

0
Gnew (1) = $7,6)— = F(, 1

q =
_ i—F(F,t)
Y new (r,t) =e
Choose:

F(F,t) = —A(r,,t). F VF(F,t) = —A(r,,t)
Which gives:

—

Anew (Fos t) =0

0
Fnew (o> t) = ¢M)+%A(Fo’t)- r= —E(Fo,t). r




Particle in a Potential Well (Atom) Interacting with Radiation

After the gauge transformation we get:
2
oy (r,t -
v (Fot) L
ot
The particle Hamiltonian is effectively:

H(t)=

p? SN B o =
o +V(F)-qE(7,,t). 7







Particle in a Potential Well (an Atom)

Suppose the Hamiltonian of a confined particle inside
some potential is:

Let the energy eigenstates be defined as:

H, ej>=Ej‘ej>

We can write the Hamiltonian as:




Particle in a Potential Well: A Two Level System (TLS)

Assume the Hilbert space is restricted to only
the two lowest two energy states of H :

|e1><e1|+|ez><ez|=i —— New approximate
completeness

The Hamiltonian becomes: Two Level Sy_s terr_l
(TLS) approximation

H,|e) = Eq|eq)

~n

Ho = Eq|eq)(e1|+ Ez|e;)(e, |

[E, ©
— 0 E1 A=E2—E1

Eq|e1)(e1]+ Ez|ez) (e, | _E1+Ez+[A/2 0

Make the following mapping: 0 —A/Z

je1) - {ﬂ and [e;) > Lﬂ

Same as the Hamiltonian of a spin 1/2 in
a DC magnetic field !!




A Trapped lon Qubit

Make the following mapping:

)|>10)
Logical !:o,;qical _
“1” qubit 0” qubit

—|1) and |ey)—

leq) >

1

Coulomb

. Laser cooling
repulsion g

and detection

Trap potential

@ /4

An ion-trap chip, NIST (2011)

Trap electrodes




A Detour on Linear Algebra

~n

Consider the Hamiltonian H, whose eigenvalues and eigenstates have been found:
> o){e)|=
=Ejle;)

(e)]ex) =8
Now consider what happens when we add another term to the original Hamiltonian to
get a new Hamiltonian:

~ ~

H=H,+0

We can write the new Hamiltonian as:




Particle in a Potential Well Interacting with Light

The classical expression for the potential energy of a charged particle (charge q)
in an electromagnetic field is (see Part I):

=N = F =xe, +ye, +ze . . .
—qE(t).r x T Y€y z n is a unit vector in

E(t) = NE, cos(wt) _J the direction of the

Electric field at the location = " electric field
of the particle E(t).F = E,(n.r)cos(wt) | polarization

We add this energy to the Hamiltonian of the particle
confined in a 1D potential:

(F)-aE (o). 7

~

F) -qE, (ﬁ.f)cos(a)t)
= I:IO + I:Ii (t)

Hamiltonian becomes time-dependent !!!




Two Level System (TLS) Approximation 5
~ ~n ~ A2 ~ ~ 3
H(t)=H,+H;(t) = fm +V (F) - aE, (AF)cos(at)

Assume a Hilbert space consisting of only the
two lowest energy states of H,:

H,|e)) = E;|e;)
H,|ey)=E;|ey)

= ﬁ —— Approximate completeness
|e1><e1 | * |ez><ez | Two Level System (TLS) approximation

Hamiltonian becomes:

~n

H(t)=H,-qE, (n.f’)cos(wt)

+<e1|ﬁ.ﬁ|ez>|e1><ez|+ 92|ﬁ.ﬁ|e1>|92><e1|

. {<91W;1><91|+<9W|22><92| }




Dipole Matrix Elements
Hamiltonian becomes:

’:’(t)=E1|e1><91|+52|92><ezn| A
-qE, cos(wt)[<e1|ﬁ.F|e2>|e1><ez|+<e2|ﬁ.F|e'1>|e2><e1ﬂ

d1 2 d21

Dipole matrix element:

dyp = (€| AF|e,) = [d%F ¢y (F)nFg, (F) = jd3F¢1*(F)(nxx+nyy+nzz)¢2(

d21 = d»;z = <92|ﬁ.ﬁ|e1>

Assume:
dig=dy=d

Hamiltonian becomes: E(t) \\\ o
H (t) = Eq|eq)(eq| + Ez|e2) (e,
— qE,d cos(wt)[|e;) (e | +|ey)(eq|]




Mapping to a Spin Hamiltonian
Make the following mapping:

leq) > 0 and |ey)— 1 A — I
! 1 2 0 E(t) § \ N
The Hamiltonian becomes:

H(t) = Eq|eq)(eq]+ E;|e2) (e, |

— qE,d cos(at)[|ey) e2|+|92 ) e

pum—

} qE, dcos((ot) Fora1D
1 0 potential well:

[Ey 0©
| 0 E

1 0 0 1| < A_
=M+é[ } qE dcos(wt){ } A=E;-Ey

2 2

Ei+E, A -
— 012 2+20-z qE,d cos(mt)G,
~ %6‘2 + lccos(a)t)é'x > | Spin Hamiltonian !!!

0o -1 0

x =—qE,d

The Hamiltonian and therefore the physics, is that of spin 1/2 in a DC z-directed




A Single Spin 2 Qubit in DC and AC Magnetic Fields

The Hamiltonian was:

H(t) = ugB,6, + ugB, cos(wt) &,

= %o"z + x cos(wt) Gy




Rabi Oscillations and the Rabi Frequency
H(t) = %6—2 —qE,d cos(wt) G,

= %o"z + kK cos(wt) 6y

I‘A

. \ l( | \f
Assume zero detuning: E(t) \\
(t)
Need to solve:

O ey (o)

Subject to the initial condition:

\w(t=0)>=|ez>=[




Rabi Oscillations and the Rabi Frequency

Need to solve:

ihwﬂ(t)\w»

Subject to the initial condition:
v (t=0))=ley)= m
Solution is (from lecture 15, see also the Appendix):
v (t)) = e_i% cos (% t)‘e2> - ie+i§t sin(% t)‘e1>
= e_igt cos(q;‘;d tJez> + ie+i§t i

Probability of finding the electron in the initial upper state at Ke ‘y/(t)>‘2
2

later time ft:
2 E.d 1 1 E_d 1
Kez‘!//(t»‘ =cosz[qz;’_ltJ=2+2cos£qh° tJ |§ {E {E { ......

Probability is oscillating at the frequency:

e
QO =

h

» Rabi frequency




Rabi Oscillations and the Rabi Frequency

Solution is:

.
> qE,d . Hot [ qEd
w(t)=e cos( T tJez>+le sm{ T )

Probability of finding the electron in the lower state at
later time ¢:

qut=

(ol () - s %

h




Rabi Oscillations and the Rabi Frequency

Initial condition:

v(e-0)=ler)-| |

Solution is (from lecture 15, see also the Appendix):

iot
w(t)=e 2 cos(ﬁt)\eg—le 2 sm(ﬁt)\eﬁ
, @ , @
=e '2tcos£qE°d tJez>+ie+'2tsin( Eod
27 2

If you want to visualize the dynamics of the quantum state:

z z z z z
-~
ey
y y — y

|
A AT E LA
=0 £ =

K




Rabi Oscillations: An Interpretation

Stimulated Absorption Stimulated Emission




Rabi Oscillations in Cold Rubidium Atoms

y 50 I/s getter pump

Driven Rabi oscillation in Rubidium atoms

New Journal of Physics, 13 065021 (2011)

Data and theory

=2

Normalized population in F




Rabi Oscillations in Semiconductor Quantum Dots

(d) Peak Rabi energy hQ_ (meV)

g
E
:
o

8 10 12 14
Bare pulse-area @ (x)

Rev. Mod. Phys., 87, 347 (2015)




Rabi Oscillations in Superconducting Qubits
In(?)
>

Phys. Rev. Lett. 107, 240501
| | (2011)

10 20
Effective pulse width (us)

P L od

-
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The Spin Hamiltonians of Two Level Systems

ot)k

Note that all these three TLS have a (relevant) Hilbert space of dimension 2 and a
Hamiltonian of the same general form:

H(t)= A+Bé&, + Ccos(wt)d,




Appendix: Solution Technique

Suppose we make the following mapping:

oo y| ana e o]

And suppose under this mapping:

H(t)= o-z + Kk cos(wt) 6y

Need to solve:

O fiey o)

With the initial condition:

“”(‘=°)>=ale1>+ﬂ|ez>=[ﬂ



Appendix: Solution Technique

Need to solve:

WO feyy o)

Assume: Time development of

w(t))=a(t) |e1>+ b(t)e

+ x cos (wt)




Appendix: Solution Technique

=H(t)|y (1))

e_lﬁtlh ab(t)
ot

e'ﬁt oa (t)
ot

= x cos(wt)

A

= ih—

ot A

| b(t) e_'# cos(wt) |

{b(t)} ) a(t)e " cos(wt)

a(t)

Assume zero detuning: A =#%® and using the rotating wave approximation:

sl s] === (2] o) (e




Appendix: Solution Technique

BRI RIS ARED

Initial conditions:

[b(t)

a0,

Ih—
ot| a
Final solution:

B

= |y (t))=




