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Lecture 16

Composite Quantum Systems, Quantum Entanglement, and the 
Death of Local Realism in Science

In this lecture you will learn:

• Quantum states of composite systems
• Joint Hilbert spaces
• Entangled quantum states
• EPR Paradox
• End of local realism in physics
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Handling Independent Degrees of Freedom: Enlarging the 
Hilbert Space

Consider the quantum state of a particle without spin:

 

x
,ˆ ˆ,k j k jr p i     

Now consider the quantum state of a particle with spin:

Since spin represents a degree of freedom 
completely independent of particle’s momentum 
and position:

x
ˆ ˆˆ ˆ, , 0k j k jS p S r       

z    z   

We just glued the states corresponding to the additional 
independent degree of freedom to the quantum state to get the 
complete quantum state of the particle

This gluing is basically enlarging the Hilbert space

 , , ,k j x y z

 , , ,k j x y z
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Two Quantum Systems
Consider two separate and different quantum systems, A and B

These could be, for example, two different particles, or two different spins, or two 
different superconducting LC circuits, or two different electromagnetic modes in an 
optical cavity, …….

L

C

+ -
VAIA

L

C

+ -IB VB

A B
x0

A B

 ,A Ax p  ,B Bx p

A B

Spins of two different particles

ˆ ˆˆ ˆ, , 0
ˆ ˆˆ ˆ, , 0
ˆ ˆˆ ˆ, ,

A B A B

A B B A

A A B B

x x p p

x p x p

x p x p i

      
       
        

The observables of different 
particles/systems represent independent 
degrees of freedom:
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Two Quantum Systems

x0

A B

 ,A Ax p
 ,B Bx p

ˆ
2

ˆ
2

A
z A A

A
z A A

S z z

S z z

   

   





ˆ
2

ˆ
2

B
z B B

B
z B B

S z z

S z z

   

   





A B

Each quantum system has its own Hilbert 
space and observables that are represented 
by operators which act in the Hilbert space 
of each quantum system

ˆ
ˆ

1ˆ
2

A A A

A A A

A oA A

x x x x

p p p p

H n n n





   
 



ˆ
ˆ

1ˆ
2

B B B

B B B

B oB B

x x x x

p p p p

H n n n





   
 



The observables of different particles/systems 
represent independent degrees of freedom
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Question: how do we describe the joint 
quantum state of two systems??

Answer: By “sticking” together the Hilbert 
spaces of the two systems, we create the 
joint Hilbert space of the combined system. 
So for example, a state          of the joint 
system in the joint Hilbert space can be 
written as:

A B   



Joint Hilbert Space of a Composite Quantum System: 
Enlarging the Hilbert Space

x0

A B

Where,          is a state in the Hilbert space of system A and            is a state in the 
Hilbert space of system B

With a little abuse of notation, we will often write the above state as:

A B

Tensor product

A B  



ECE 3030 – Summer 2009 – Cornell University

Operators in the Joint Hilbert Space
Question: how do we describe observables 
and operators in the joint Hilbert space?

Answer: By “sticking” together operators of 
the two systems, we create an operator that 
acts in the joint Hilbert space. 

Example: The operator for the observable O 
of system A and observable R of system B 
can be combined as follows: 

ˆ ˆA BO R

x0

A B

Tensor product

ˆ ˆ ˆˆ ˆ ˆ
A B A B A BA B A BO R O R O R                       

This operator acts on a state          of the joint Hilbert space as follows: 

Simply put, each operator in a tensor product acts in its own Hilbert space!

With a little abuse of notation, we write the operator as:
ˆ ˆˆ ˆA B A BO R O R 
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Inner Product in the Joint Hilbert Space

Question: how do we describe the inner 
product between two states in the joint 
Hilbert space?

Answer: Suppose:

Then: 

x0

A B 1 1 1

2 2 2

A B

A B

  

  

 

 

1 2 2 1 2 1.A A B B     
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Joint Hilbert Space of Two Spin 1/2 Particles: An Example

A B

Consider a state of two different spin 1/2 particles (two systems):
A B

z z    

   
   
   

2

ˆ ˆ ˆ ˆ

ˆ ˆ                        

ˆ ˆ                        

ˆ ˆ                        .
2 2 4

A B A B
z z z zB A A B

A B
z zB A A B
A B
z zB A A B

B A
z zB B A A

S S z z S S z z

z z S S z z

z z S z S z

z S z z S z

         

    

    

               
   

  

A B
z z    
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Joint Hilbert Space of Two Spin 1/2 Particles: An Example

Consider a state of two different spin 1/2 particles:
A B

z z    

ˆ ˆ ˆ

ˆ               .
2

A A A
z z zB A A B B A A B

A
zB B A A

S z z S z z z z S z z

z z z S z

                           

     


ˆ ˆ ˆ

ˆ               .
2

B B B
z z zB A A B B A A B

B
zA A B B

S z z S z z z z z S z

z z z S z

                           

      


ˆ ˆ 1̂A A B
z zS S 

The operator for one subsystem can also be 
written as:

ˆ ˆ1̂B A B
z zS S 

A B

A B
z z    
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Measurements Performed on One Subsystem: A-Priori Probabilities

1 1
2 2

1     
2

A B A A B B

A B A B A B A B

x x z z z z

z z z z z z z z

                  

             

A B

Suppose spin of A is measured in the z-direction (spin of B is not measured)

   

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2 2

2

1
2

A AB B

A Bj

z z z z

z j

 




      



  

What is the a-priori probability of measuring 
spin A  to be in the +z-direction?

   

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2 2

2

1
2

A AB B

A Bj

z z z z

z j

 




      



  

What is the a-priori probability of measuring 
spin A  to be in the -z-direction?
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Measurements Performed on One Subsystem: Collapsed State

1 1
2 2

1     
2

A B A A B B

A B A B A B A B

x x z z z z

z z z z z z z z

                  

             

A B

Suppose spin of A is measured in the z-direction (spin of B is not measured)

Suppose spin A is measured and the result 
was           for       :

 
normalize

1̂

1
2

      

BA A

c

c A B B

A B

z z

z z z

z x







  



       

   

Projector

2
Suppose spin A is measured and the result 
was           for      :

 
normalize

1̂

1
2

      

BA A

c

c A B B

A B

z z

z z z

z x







  



       

   

Projector

2ˆA
zS ˆA

zS
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Entangled and Unentangled Quantum States of Composite 
Systems

Quantum states of composite systems come in two different varieties:

1) Unentangled states

2) Entangled states
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Unentangled Quantum States of Bipartite Systems

Consider the following two states of the 
bipartite system:

1 A B
z z    

2
1 1
2 2

1     
2

A B A A B B

A B A B A B A B

x x z z z z

z z z z z z z z

                  

             

Both these states can be written in the form:

some  state  of  A some  state  of  BA B A B     

In other words, the joint state of A and B can be separated out or factored out and 
written as a single tensor product. States which can be written this way are called 
unentangled states

A B

1 A B
z z    
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Entangled Quantum States of Bipartite Systems

Consider the following quantum state of two spins:

1
2 A B A B

z z z z          

A B

A B

St
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This state can not be written in the form:

some  state  of  A some  state  of  BA B A B     

In other words, the joint state of A and B CANNOT be separated out or factored out 
and written as a single tensor product. 

Such states are called entangled states
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Consider again the following quantum state of two spins A and B:



The above state is prepared in a lab on Earth
Then spin B is taken to a distant planet Zorg

Question: Can a measurement made on the 
quantum state of spin B have an instantaneous 
effect (faster than the speed of light) on the 
quantum state of spin A?

A B

A

B

Earth

Earth

Zorg

Local Measurements on Quantum States of Bipartite Systems
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems - I

1 1     
2 2

1     
2

A B

A A B B

A B A B A B A B

x x

z z z z

z z z z z z z z

    

             

             

Consider the following unentangled quantum state of two spins:

A B

A B
x x    

Measure spin of B 

Compare these 
two results

Find a-priori 
probabilities for spin 
A measurement

Find a-priori 
probabilities for spin 
A measurement

Move B to planet Zorg
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems - II

Consider the following unentangled quantum state:

1 1     
2 2

1     
2

A B

A A B B

A B A B A B A B

x x

z z z z

z z z z z z z z

    

             

             

Question: What are the a-priori probabilities of measuring spin-up or spin-down if spin of 
particle A is measured along the z-axis (i.e. if the observable         is measured)?

   

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2 2

2

1
2

A AB B

A Bj

z z z z

z j

 




      



  

 
All  orthogonal  

      states of  B that   
      form  a  
      complete  set

2

1
2

A Bj
z j 


  



A
zS

For spin-up A: For spin-down A:
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems - III

Again consider the following unentangled
quantum state:

1 1     
2 2

A B

A A B B

x x

z z z z

    

             

Suppose the observable        is measured and a 
result of spin-down is obtained 

The resulting normalized collapsed state is: 

B
zS

1 1      
2 2

c A B

A A B A B A B

x z

z z z z z z z

     

                   

  normalize1̂A cB B
z z     

Projector
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems - IV

The resulting collapsed state is: 

1
2

1     
2

c A A B

A B A B

z z z

z z z z

         

        

Question: Given that the spin of particle B has been measured, we again ask what 
are now the a-priori probabilities of measuring spin-up or spin-down if spin of 
particle A is measured along the z-axis (i.e. if the observable         is measured)?

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

1  same  as  before!
2

A cBj
z j 


  

 

In an unentangled state, the a-priori probabilities for measurements performed on 
system A do not change if measurements have been made on system B first

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

1  same  as  before!
2

A cBj
z j 


  

 

A
zS

For spin-up: For spin-down:
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems: Summary of Results

1 1     
2 2

1     
2

A B

A A B B

A B A B A B A B

x x

z z z z

z z z z z z z z

    

             

             

Consider the following unentangled quantum state of two spins:

A B

A B
x x    

Measure spin of B 

Compare these two 
results: THEY AGREE

Find a-priori 
probabilities for spin 
A measurement

Find a-priori 
probabilities for spin 
A measurement

Move B to planet Zorg
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Local Measurements on Entangled Quantum States of 
Bipartite Systems - I

Consider the following entangled quantum state:

1
2 A B A B

z z z z          

A B

A B

St
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1
2 A B A B

z z z z          

Measure spin of B 

Compare these 
two results

Find a-priori 
probabilities for spin 
A measurement

Find a-priori 
probabilities for spin 
A measurement

Move B to planet Zorg
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Local Measurements on Entangled Quantum States of 
Bipartite Systems - II

Consider the following entangled quantum state:

Question: What are the a-priori probabilities of measuring 
spin-up or spin-down if spin of particle A is measured along 
the z-axis (i.e. if the observable         is measured)?

1
2 A B A B

z z z z          

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

1
2

A cBj
z j 


  



 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

1
2

A cBj
z j 


  



A
zS

For spin-up: For spin-down:
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Local Measurements on Entangled Quantum States of 
Bipartite Systems - III

Suppose the observable        is measured and a 
result of spin-down is obtained: 

The resulting normalized collapsed state is: 

B
zS

c A B
z z    

Consider again  the following entangled
quantum state:

1
2 A B A B

z z z z          

  normalize1̂A cB B
z z     

Projector

On planet ZorgOn planet Earth
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Local Measurements on Unentangled Quantum States of 
Bipartite Systems - IV

The resulting collapsed state is: 

Question: Given that the spin of particle B has been measured, we again ask what 
are the a-priori probabilities of measuring spin-up or spin-down if spin of particle A 
is measured along the z-axis (i.e. if the observable         is measured)?

In an entangled state, the a-priori probabilities for measurement results of system A 
change if measurements have been made on system B first

c A B
z z    

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

1  NOT  the  same  as  before!

A cBj
z j 


  

 

 
All  orthogonal  states

      of  B that   form  a  
      complete  set

2

0  NOT  the  same  as  before!

A cBj
z j 


  

 

A
zS

For spin-up: For spin-down:
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Local Measurements on Entangled Quantum States of 
Bipartite Systems: Summary of Results

Consider the following entangled quantum state:

1
2 A B A B

z z z z          

A B

A B

St
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1
2 A B A B

z z z z          

Measure spin of B 

Compare these two 
results: THEY DO NOT 
AGREE !!

Find a-priori 
probabilities for spin 
A measurement

Find a-priori 
probabilities for spin 
A measurement

Move B to planet Zorg
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Unentangled and Entangled States: Summary of Results

Question: Can a measurement made on the state of 
spin B have an instantaneous effect (faster than the 
speed of light) on the state of spin A? A B

A

B

Earth

Earth

Zorg

Answer: if the state of spin A and spin B is an 
entangled state, then a-priori probabilities for 
the results of measurements made on one spin 
will depend on whether a spin measurement has 
been made on the other spin or not 
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Einstein's philosophical postulate: 

Any acceptable physical theory must fulfill "local realism“ 

Realism: 
There must be an aspect of physical reality associated with a physical quantity, and 
this aspect should not depend on whether this physical quantity is measured or not

Locality:
Physical quantities should not instantaneously get affected or influenced by other 
physical quantities that are located far away  

Local realism implies that real measurable attributes of a physical system cannot 
depend on things and happenings far away (that are outside the past light cone of 
that physical system) 

Entangled States and the Einstein-Podolsky-Rosen (EPR) 
Paradox
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Entangled States and the Einstein-Podolsky-Rosen (EPR) 
Paradox

Consider again the following entangled quantum state of two particles A and B:
1
2 A B A B

z z z z          

The above state is prepared in a lab on Earth
Then particle B is taken to a distant planet

Question: Can the choice of measurement made on the state of 
particle B have an instantaneous effect (faster than the speed of 
light) on the quantum state of particle A?

If so, then how can one assign any element of reality that is local 
to the quantum state of A? In other words, the “real” physical 
state of particle A cannot depend on the choice of measurement 
on a far away particle B 

A B

AB

Earth

EarthZorg
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Entangled States and the Einstein-Podolsky-Rosen (EPR) 
Paradox

Consider again the following entangled quantum state of two particles A and B:

1
2 A B A B

z z z z          

Suppose the spin of particle B is measured along the z-axis

1) If the result is spin down: collapsed state is:

c A B
z z    

2) If the result is spin up: collapsed state is:

c A B
z z    

A B

AB

Earth

EarthZorg

A

A

State of spin A in 
the collapsed 
state
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Entangled States and the Einstein-Podolsky-Rosen (EPR) 
Paradox

Consider yet again the following entangled quantum state of two particles A and B:
1
2
1     
2

A B A B

A B A B

z z z z

x x x x

          

         

Suppose spin of particle B is now measured along the x-axis
(A different choice of measurement)

1) Result is spin down: collapsed state is:

c A B
x x     

2) Result is spin up: collapsed state is:

A B

AB

Earth

EarthZorg

c A B
x x    

A

A

State of spin A in 
the collapsed 
state
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Entangled States and the Einstein-Podolsky-Rosen (EPR) 
Paradox: “Spooky Action at a Distance”

Consider again the following entangled quantum state of two particles A and B:

1
2 A B A B

z z z z          

Einstein’s Question: Can the choice of measurement made on 
the state of particle B have an instantaneous effect (faster than 
the speed of light) on the quantum state of particle A?

If so, then how can one assign any element of reality that is local 
to the quantum state of A?

A B

AB

Earth

EarthZorg

Conclusion: No local realism exist in quantum physics!!


