Lecture15

The Electron Spin and the Spin Qubit

In this lecture you will learn:

* Quantum bits (or qubits) vs classical bits

* Dealing with quantum states that have no wavefunctions
e Spin 1/2 in quantum physics

e Spin 1/2 and quantum two level systems

«Spin1/2in D A ic fiel
Spin 1/2 in DC and AC magnetic fields Paul Adrien Maurice Dirac

(1902 — 1984)
Nobel Prize 1933
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Classical Bit Qubit




Electron Spin Explained (

Electrons (like most other elementary particles) possesses an internal degree of
freedom called “spin”

We don’t know what spin really is we know it is associated with an
internal angular momentum of some sort

Electron spin explained: imagine a
ball that's rotating, except it's
not a ball and it's not rotating

The spin (or, more precisely, the spin angular momentum) is an observable




Electron Spin Angular Momentum

The electron spin angular momentum operator is a vector operator (just like the
momentum operator or the angular momentum operator):

—

S=Syex+S,e, +S,e,
By convention, the x, y, and z components of the spin angular momentum are written as:

h h h

S, =—-0, Sy = 20y S, =—o,

2

v

Pauli Spin Operators

Angular momentum has units of 7 (i.e. energy-second) and so the eigenvalues
of the Pauli operators, whatever they might turn out to be, will be dimensionless




The Hilbert Space of Electron Spin States

Experimental fact: electron spin angular momentum, \Z T>
measured along any axis, say z-axis, can take two values:

hoo o _h
+E or 2

up or down

~n

Implication: the z-component of the spin angular momentum operator S, has
only two eigenvalues

+E and _h
2 2

~n

The corresponding eigenstates of S

, corresponding to the up and down spins
along z-axis are:

2 1)




The Operator for Spin Angular Momentum: z-axis

The operator for spin angular momentum measured along z-axis is:
~ h n
S;=,-0;
2

And its eigenvectors must be the two spin states:

h h
S, zT>=+E‘zT> —E‘z¢>

ho. h no. h
= 6; zT>=+E‘z T> = 50z z¢>=—§‘z¢>

:>6'Z‘ZT>=+‘ZT> :>o“'zz¢>=—‘z~l«>

So now the measured values of the electron spin angular momentum’s z-component
can be +7/2 or—h/2 as observed in experiments

The eigenvalues of 6, mustthenbe 4+1 and _—-1




The Operator for Spin Angular Momentum: x-axis

The operator for spin angular momentum measured along x-axis is:
- h
S, =—0o
X X
2

And its eigenvectors must be the two spin states:

R i - h
SX‘XT>=+E‘XT> Sx‘x¢>=—5‘x¢>

:>EOA'X‘XT>=+§‘XT> :E&x‘x¢>=—g‘x¢>

2 2
= 6y |x T)=+|xT) = Gy |x ) =—|x{)

So now the measured values of the electron spin angular momentum’s x-component
can be +7/2 or—h/2 as observed in experiments

The eigenvalues of 6, mustthenbe +1 and -1




The Operator for Spin Angular Momentum: y-axis

The operator for spin angular momentum measured along y-axis is:

~ h .
S_V =50'y

And its eigenvectors must be the two spin states:

S, Iy )=+ jy ) Iy 4=y )

h . h .

A I S P PRY R

2 2
Saly Nyt ey =y

So now the measured values of the electron spin angular momentum’s y-component
can be +7/2 or—h/2 as observed in experiments

The eigenvalues of G, mustthenbe +1 and -1




The Operator for Spin Angular Momentum

The operator for spin angular momentum measured along z-axis is:
~ h n
S;=_-0;
2

And its eigenvectors must be the two spin states:

h h
S, zT>=+E‘zT> —E‘z¢>

ho. h no. h
= 6; zT>=+E‘z T> = 56z z¢>=—5‘z¢>

:>6'Z‘ZT>=+‘ZT> :>o“'zz¢>=—‘z~l«>

So now the measured values of the electron spin angular momentum’s z-component
can be +7/2 or—h/2 as observed in experiments

The eigenvalues of 6, mustthenbe 4+1 and -1
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Spin 1/2 Commutation Relations
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x
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64,6 | =2ié,

> _O'y,O'z:|=2lO'x

(65,6 x |=2i5,

The above commutation relation express fundamental laws,
consistent with the Lorentz invariance of the universe, and

cannot be derived from anything more fundamental




Spin 1/2 Commutation Relations

§,,8, |=in$,

~n ~n

$,.8, |=inS,

~n ~n

S,.Sy |=irS,

If two operators don’t commute, the corresponding observables cannot have a
simultaneous reality

Example: Because position and momentum operators don’t commute,
[ x,p]=in
Position and momentum observables don’t have simultaneous reality; a particle can

be in a position eigenstate, or in a momentum eigenstate, but not in both at the same

time.
Consequently, either the position eigenkets taken by themselves, or the momentum

eigenkets taken by themselves, form a complete set:

fole | x)(x| = 152 |p)(p| =1

~n

Lesson: One doesn’t need eigenstates of §x or Sy to be included in the
completeness relation:

~n

‘z T><z T‘+‘z ¢><z ¢‘=1




The Hilbert Space of Electron Spin States

The operator .§z = %6-2 is Hermitian; this means: ‘ZT>

The Hilbert space of electron spin angular momentum is
completely spanned by just these two states:

‘z T><z T‘+ ‘z ¢><z i,‘ = ﬁ —— Completeness

We must also have:

<Z T‘Z T> = <Z i«‘z »J«> =1 —— Normalization

<z T‘z ~L> =0 —— Orthogonality

In general, the spin state of an electron can also be a superposition of the up and
down spin states:

) = a‘z T>+b‘z ¢>

= (vly) =[al* +[b[* =1




The Hilbert Space of Electron Spin States

We can write the spin angular momentum operator as:

~ h . ~h . oA
SZ=E Z=150-Z1

=[\z¢><zﬂ+\z¢><zu]gaz (|2 1)z ] +|z4)(z 4]

h h
=E‘z ™z T‘—E‘z Wz




The Matrix Representation for Spin Angular Momentum

Start from: - . .
S; =50 =E‘z ™z T‘—E‘z Nz

Use a representation by the Hilbert space formed by
2x2 matrices and 2x1 column vectors:

o o) o

Then since an operator is always diagonal in the representation of its eigenvectors:
~ k. |1 0 . 1 0
S = — — | o, >
2529 7 2{0 -1} y O [0 =

Example: Spin angular momentum expectation value or mean value:

|y/>=a‘zT>+b‘zJ«>=_:-
A 1 01[a]l
($2)=wipaalv)=la* 012l O[5 |- 2 - 2

ﬁ



The Full Hilbert Space of Electrons

Since the spin state of an electron can be Lz ™ or |z!) ,the complete quantum
state of the electron is obtained by “gluing” together its spin degree of freedom with
its other degrees (position, momentum, etc) of freedom:

v)=lg)®|zT)  or v)=16)®|z4)

So for example, the wavefunction of a spin up electron becomes:

Electron with position
< |W |¢ ‘Z > ¢(X)‘Z T> +<— 1 wavefunction ¢(x) and

Or, for a spin down electron: =spin up

Electron with position
(x|y*)=(x|4) ‘Z > ¢(x)‘zl«> <+<—— < wavefunction ¢(x) and
spin down

The inner products in this Hilbert space work as follows:

v)=19)®|z1) (212 %)+(z |2 1)
= (wlw)=(plg)(z |z T)=1

v)=1)® gz )]z ]




The Nature of Spin 1/2

Very tempting to
take this too
literally




Spin 1/2 Commutation Relations

The components of the spin angular momentum don’t commute:

S, |=ins; 6,6 | =2i6,

- in$, > 5.6, | = 206,

=ihSy _az,ax]=210y

In the basis:

‘ZT> . <zT‘zT>=<z¢‘z~L>=1
- <ZT‘Z~L>=0 ——— Orthogonality

‘z~1«> — ‘zT><zT‘+‘zi><zH=ﬁ ——— Completeness

We get:

Pauli Spin
Matrices

Diagonal




The Operators for Spin Angular Momentum

_n[0 1
2|1 0

Pauli Spin Matrices

Since we have chosen the eigenstates of the z-component of the spin angular
momentum for the matrix representation, the operator for the z-component of the spin
angular momentum is diagonal in the chosen representation, but the operators for the

x- and y-components are not diagonal !




The Nature of Spin 1/2

‘z T> zd)

Very tempting to
take this too
literally

Since the X, y, and z components of the spin angular momentum operator do not
commute, different components of the spin angular momentum cannot be
simultaneously measured with complete accuracy




Spin 1/2: Classical vs Quantum Pictures

(5,8, ]-m8,  [5,8,]-in$,  [5.5,]-ins,
Consider the state: |y/) = ‘z T>

It is an eigenstate of the z-component of the spin
angular momentum:

We get: A
Tempting

R A
picture




Spin 1/2: Classical vs Quantum Pictures

For the state: |W> = ‘Z T>

classic
picture




Spin 1/2: Classical vs Quantum Pictures

y

Wrong
classic
picture

= inS,

= in$,

Quantum state is: |y/>

)-(5,)-0

(432)(083) - 15

What does the uncertainty principle say:

A - 2
S,,S :|>‘ ‘<1h The chosen state satisfies
y . ..
= = the uncertainty principle
with equality

<A§§><A§f,> > K[




The Operators for Spin Angular Momentum

The operator for spin angular momentum component along the x-axis, in the
basis defined by the eigenvectors of S,, is:

Eigenvalues and eigenvectors are:

g&x XT>=+gXT>

E6xx¢>=—ﬁxi> }_
2 2 - -1 V2

The operator for spin angular momentum component along the y-axis is:

y )
y{)




Spin Eigenstates for a General Direction

21)
x 1)

A spin 1/2 state pointing in the +z direction is:

A spin 1/2 state pointing in the +x direction is:

A spin 1/2 state pointing in the +y direction is:

Lets generalize: what if one wants a spin 1/2 state
pointing in the direction of unit vector n ?

First, define a spin operator for the direction n

n =sinfcos ge, + sindsinge, + cos fe,

R R - - . h| cosé@
.n= [Sxex +S,e,+ Szez}.n =3 cingeid

Operator for spin pointing in n direction

Next we find the two eigenstates of the operator §ﬁ

zT>+‘z¢>

zT>\{|-Ei‘z ¢>

y M=

singe "¢

—cos@




Spin Eigenstates for a General Direction

-S.A=[§,x+8,7+8,2]h= g[

cosfd singe ¢
sinfe'® —cosé

The two eigenstates and the eigenvalues of §ﬁ are found to be:

A1) =cos(6/2)e 2|z 1) +sin(g/2)e"?|z )

ﬁT>=+%ﬁT>

~n

=9y

A l)=sin(8/2)e'??|z1)-cos(6/2)e??|z )

= §;[AL)=-7]A )




Classical Larmor Precession of a Magnetic Momemet in a
Magnetic Field

Consider a classical magnetic moment in a DC magnetic field

Energy= E=-m.B

Angular momentum of a magnetic moment:

m=yL

!

Gyromagnetic ratio

Torque and Dynamics:




Classical Larmor Precession in a Magnetic Field
dny () _
dt

»
»

~(*B.B) m(t)+y*B[B.m(t)]

+of m(t)=y*B|B.m(t)]

d’m (t)
dt?

+aof mL(t)=0

Frequency of precession (also called the Larmor frequency):

O = |7Bz|




Spin 1/2 Qubit in an External Magnetic Field

Electron spin angular momentum has an associated

: Bohr magneton
magnetic moment:

eh

“8 = 2m

§=——|:S ex+S e +Se:| z1) %)

*3

m

Consider a spin 1/2 particle (electron) in an applied
magnetic field:

The classical expression for the enerqy of a magnetic
moment in an external magnetic field is:

—

E=-m.B

The Hamiltonian of a spin 1/2 in an external magnetic
field is:

L ) 1 0
H=—m.B=ﬂBO"B='”BBZaz=’UBBZ{0 —J




Spin 1/2 Qubit in an External Magnetic Field: Zeeman Splitting

i 10 B=B,3
H=/‘BBZ 0 _1 'y 'y 4 'y

Eigenstates and eigenvalues of the Hamiltonian:

The Hamiltonian as written in the ‘Z T> 4 \|/> basis is
already diagonal so:

~n

H|z1)=+uB,|z 1)

I:I Z \L> = —/IBBZ Z \L>
The eigenvalues are: +ugB, ,—ugB,

Energy splitting between the eigenvalues
= Zeeman splitting = 2ugB, = A
1)

21)

0 < IA=2/IBBZ
21)

‘z~l«> Zeeman splitting




Spin 1/2 Qubit in an External Magnetic Field
An Example of a Two-Level System (TLS)

. ) 1 0
H = ugB,0, = ugB, |:0 _1j|

This is an example of a two-level system (TLS)

A TLS has a Hilbert space of dimension two

Any 2x2 matrix W can be written in terms of the Pauli matrices as follows:

=

W=A6-X+Bé-y+C6'z+D1

Therefore, the Hamiltonian of a TLS can always be written as:

H=ao-x+bo-y+co-z+d1

With appropriate choice
of the constants A, B, C,
and D




Spin 1/2 Qubit in an External Magnetic Field: TLS Dynamics

Consider an electron (spin 1/2) placed inside a z 1 B=B.z
uniform magnetic field, as shown 4 4 A A r

Suppose at time =0, the spin state of the electron is:

0
v (t=0))=cos(6/2)|zT)+sin(8/2)|z V) )‘/

Question: Find the spin state for time t> 0

We need to use:

in- | (£)) = Alw ()

Slp(t)=e ' |p(t=0))

H

= |y ()= e ' n' [cos(ﬂ/Z)‘ z ) +sin(6/2)|z ~L>] = cos(6/2)e_i# zT)+ sin(9/2)e_i;t z1)

ﬂBB ﬂBB ¢
= |y (t)) = cos(6/2)e ‘z >+sm(¢9/2)e no |z )




Spin 1/2 Qubit in an External Magnetic Field: TLS Dynamic

Z y —

_i'uBBZt _H-.UBth A
lw(t))=cos(8/2)e " |zT)+sin(g/2)e * |z!)

($)(8) = (0)] 8w (1) =  sind cos| 2485 ¢

(8, )(8)= (v (1), v (1)) = 2sine sin(z“%t)

<§Z>(t) - <W(t)‘§z ‘W(t» = gcosﬂ

2B,
h

Precession frequency = Larmor frequency = @ = = |7Bz|

This is as close to the classical Larmor precession of magnetic moments in
magnetic fields as you can get in quantum physics with spin 1/2




Spin 1/2 Qubit in an External Magnetic Field: TLS Dynamic
Z y —
. ugB; -.UBth A A A

_ Th 2 ) e si Th Tz
lw(t))=cos(6/2)e ‘ >s"(9/2)e ‘ > —

Suppose a measurement is made at time f to determine
the z-component of the spin angular momentum

What are the possible values?
What are the a-priori probabilities?

—>
X

The possible values are the eigenvalues of §z = %&z which are +7/2 and —p/2

The a-priori probability of finding +7/2 is: KZ T‘y/(t)>‘2 = cos? (6/2)

The a-priori probability of finding —#/2 is: KZ i«‘y/(t»‘z = sin? (6/2)




Spin 1/2 Qubit in an External Magnetic Field: TLS Dynamic
Z y —
. ugB; -.UBth A A A

— _lhtzT+i PN
lw(t))=cos(6/2)e ‘ >s"(9/2)e ‘ > —

Suppose a measurement is made at time f to determine
the x-component of the spin angular momentum

What are the possible values?
What are the a-priori probabilities?

~n

The possible values are the eigenvalues of S, = g&x which are +7/2 and —7/2

The a-priori probability of finding +7/2 is: <X T‘y/(t)> 1+sinfcos| —*=

The a-priori probability of finding —7#/2 is: <x ~L‘y/(t)> 1-sindcos




The Classical Bit vs the Quantum Bit (Qubit)
zT)=|0)
o £ >

Rt
|

S x 1) = z7)+|z1) _10)+]1)
- 2 2

1

|y B8
,_
L

\J]

Qo
Classical Bit Qubit

The classical bit (however realized physically) can deterministically take any one of two
values, 0 or 1

The quantum bit (or qubit) can be realized by any physical thing whose quantum state
resides in a Hilbert space of dimension two (like the Hilbert space of up spin state and
down spin state of an electron). The qubit, unlike the classical bit, can also be in a
superposition of two states!




Visualizing the Quantum State of the Quantum Bit (Qubit)

Consider a qubit (not necessarily a spin qubit):

lv)=a|0)+B|1)
a and S are complex
numbers

Wlv)=1 =laf +|p =1
We can write it using the spin notation:

v)=alzT)+p|z{)

Writing a qubit using the spin notation gives a way to visualize the quantum state!
Lets see how that happens

Without losing generality we can assume:

a= cos(e/z)e—i¢/2 2 2
B = sin(9/2)9i¢/2 ':> |a| + |,B| — 1

lw) = cos(H/Z)e"WZ‘z T+ sin(0/2)e"¢/2‘z {)




Visualizing the Quantum State of the Quantum Bit (Qubit)

lw) = cos(0/2)e"'¢/2‘z T>+ sin(0/2)e"¢/2‘z ¢> =|n T>

The qubit state can now be visualized as a spin 1/2 state
pointing in the direction of the unit vector n in 3D space:

n = sinfcos ge, + sindsinge,, + cos fe,

Different possible qubit states are then seen as “spin states”
pointing in different directions in 3D space

Different spin states are not orthogonal, and the
dimension of the Hilbert space is still 2, but one can
have an arbitrary superposition of the up and down
spin states:

lv)=al0)+B]1)




Single-Bit Classical Logic Gates

Classical single-bit logic gate takes one-bit input and produces a one-bit output

Only two single-bit logic gates are possible

NOT Gate

Input  Output Input  Output
0 0 0 1
1 1 1 0




Single-Qubit Quantum Gates

Quantum single-qubit gate takes one-qubit input and produces a one-qubit output

|V’in>=a‘ZT>+,B‘Z~L>_ |Wout>=7‘ZT>+5‘Z‘L>
= a|0)+ B|1) input — output

=7[0)+8[1)

Infinitely many single-qubit gates are possible

Example:
A gate that reflects a qubit along the horizontal plane

Z 4

How does one physically realize these single-qubit quantum gates?




Single Spin Qubit in a DC Magnetic Field: A Two Level System

—

Consider a spin 1/2 in a z-directed strong DC magnetic B = Bzi
A

A A

-1

A=2ugB,

‘Z¢> Zeeman splitting




Single Qubit Rotations: Time-Dependent Magnetic Field

Consider a spin 1/2 in a z-directed strong DC magnetic field B,z
and a x-directed weak AC magnetic field at frequency o 4 4 A 4 4

B(t) = B,e, + B, cos(wt)e,

Where: hip=A=2ugB,

21)

1)

< I A=2ugB, = hw B, |cos|

z ‘l’> ‘z ¢> Zeeman splitting

The frequency of the AC field is tuned to the Zeeman splitting

The Hamiltonian (now time-dependent) becomes: m=—/ip [6"9" toyey+ 6292]
= —ugo
H(t)=-m.B = ugs. B(t) = ugB,6, + ugB, cos(wt)é,

= 5, + kG, cos (wt)




Single Qubit Rotations: Time-Dependent Magnetic Field
B,z

A A A A A

H(t)=-m.B = ugé. B(t) = ugB,6, + ugB, cos(at)é,

_4 5, + kG cos(wt) /

A
2

x cos(wt)

x cos (wt) 4

2

Suppose:
lw(t=0))=|zT)=]0) = qubit in state "0"
Question:

w(t)="




Single Qubit Rotations: Time-Dependent Magnetic Field

Suppose: A
‘y/(t=0)>=‘ZT> A A A ABZZA

Then find:
ih%\w(t)>= H(t)w (t)) /

Can we convert this time-dependent Hamiltonian to
something that is time-independent?

() =W (0)|y (1))

0 oW (t)

() =W (t)in_|y (1)) +in v (1))
2] 2() =W (RO () +in 2L Dy 1)

02| (0) = W (AW (W () () in L0t (o (o) ()

oW (1)




Single Qubit Rotations: Time-Dependent Magnetic Field

in 22 () =W (AW (W () (0) + in LDt ()i (0 (1)

= in =] 2(8)) =W (AW ()] £ () + i 2

|

aW(t)

W (6)] (1))

x cos(mt)

A

2

xcos(wt)e

—iwt

xcos(wt)e

A

2

+iwt




Single Qubit Rotations: Time-Dependent Magnetic Field

wi(t)z(t))

oW (t)
t

= ih-2| 2() =W () A (OWT (6)| 2 (1) +in

(A -hw)
2

+iwt

kcos(wt)e

| 2())

blh%‘l(t»z _(A—ha))

2 Rotating wave

:(A —/h,@?), K i approximation
2 2o l|x(®)

x cos(ot)e™'"

= in—|7(1) =

LS
2 Zero-detuning

|zT ‘zT)
0

ih%‘;{(t»: |z¢>i1 A=24gB, = ho

|z J,) Zeeman splitting

The frequency of the AC field if tuned to
the Zeeman splitting




Single Qubit Rotations: Time-Dependent Magnetic Field

0 X
2
0

ih%‘;{(t»: ‘;((t)> —ax > — + Time-independent equation!!

LS
| 2
Boundary condition:
G| x M) =+ x 1)
Z(t=0))=|zT x Th+|x 1 Tx
21)= 5 lx el )] Sl

Solution of the above time-independent equa?{ion is: —
—i—0yt

2(O)=e 27| x(t=0)=e B S—{[x T)+[x¥)]

(1) =wT(1)]2(1)) =




Single Qubit Rotations: Spin Rabi Oscillations
it (x
w(t)=e 2 cos(z—t)‘z T -ie 2 sm(ﬁtj‘zw

(8 )() = (w () S v (8)) =gsin(%t)sin(wt)
(8, )(6) = (w(®)|$ \W(t)>=-—s.n(’; t)cos(wt)

B, ca

(8:)(0)= (v (]| (1)) = S eos( )

z,




Single Qubit Rotations: 1/2 pulse and T pulse

s(of) X

Flip the qubit




The Quantum Bit (Qubit): Notation

The quantum spin qubit can be written as:

|w>=a‘z T>+,8‘z ¢>

Or one can slightly change the notation to match that of
the classical bits:

lv)=al0)+B[1)

But one should keep in mind that the dimension of the
Hilbert space is 2 so any 2-dimensional representation
would work.

In particular, we can use column vectors:

w=elof 4313




Single-Qubit Quantum Gates

Quantum single-qubit gate takes one-qubit input and produces a one-qubit output

SR Vout) = 7|21)+3]24)
=a|0)+

— output

=7|0)+5[1)

Infinitely many single-qubit gates are possible corresponding to any rotation of the
qubit

Example:
A gate that reflects a qubit along the horizontal plane

Z 4




Single-Qubit Quantum Gates are Defined by Unitary Operators

Quantum single-qubit gate takes one-qubit input and produces a one-qubit output by a
unitary rotation

Win) = ‘V/(t = °)> input U output |V’out> - ‘V’(t = T)>

—a|z 1)+ p|z4) =7|z1)+s]z4)
= a|0)+ B|1) =7|0)+48[1)

|V’out U|V/ln - -

Unitary = utu =1
The action of the quantum gate on an input qubit is unitary:

A U
|V’out> = U|V/in> = |:U11
21

Any physical quantum gate can be represented by a unitary operator
Conversely, any unitary operator can be realized by a physical quantum gate




Single-Qubit Quantum Gates are Linear

Suppose we have a quantum gate that is defined by its actions on 0 and 1 qubits
(or up and down qubits) separately as follows:

|'//in>=|0> U |Wout>=0|Win>=a|o>+ﬁ|1>

in)=1) —— 0 [ [Vour)=Ulyin) =7[0)+5[1)

Then if the input becomes a superposition, the result is:

Win)=A|0)+B[1) —— U

|V’out> = 0|V/in>

_U[A|0 +B| ] Linearity

The linearity of the single qubit = AU 10)+ BU|
gates follows from the linearity of _ A(a|0>+ ,B| >)+ B }/|0>+ §| >)

the quantum operators
=(Aa+By)|0)+(AB +Bs)|1)




Single-Qubit Quantum Gates: Pauli Matrices

Quantum single-qubit gate takes one-qubit input and produces a one-qubit output

|V’in>=a‘z T>+ﬁ‘z \|,> input output |y/out>=7‘z T>+5‘Z \L>

¥

|V’out>=0|V/in>

Uiy Uz

|V’out> = 0|V/in> = |:U21

Note:

e Since the gate is an operator acting in a 2-dimensional Hilbert space, it can be
represented as a 2x2 matrix

e Since any 2x2 matrix can be represented as linear combination of the 3 Pauli
matrices and the identity matrix, one can write:

U=Ao“'x+Bo“-y+Co“'z+D1




Simple Single-Qubit Quantum Gates: X, Y, Z Gates

Rotates the qubit by 180 degrees
The X-gate: |  |y;p,) X = |wou) |Wrtthex-axis

V4
|Wout>=0|V/in>=6'x|V/in> XC

Rotates the qubit by 180 degrees
w.r.t the y-axis

The Y-gate: |V’in> = |V/ out>

- V4
%e y
|V’out> = U|V/in> = 6'y |Win>

X

"Rotates the qubit by 180 degrees
The Z-gate: |V’in> - |V/0ut> w.r.t the z-axis

|V’out> = 0|V/in> = 0y |V/in>




Simple Single-Qubit Quantum Gates: The Hadamard Gate

The H-gate: _| V/in>




Simple Single-Qubit Quantum Gates: The S-Gate

The S-gate: |V’out> s ——|vin)

Vout) = Ulwin) = [(12;')02 +(7 a]Iw,-n> =

Vin) - \zT>=[o

r

Vou)=[0)=[21)=|
N\

r




Simple Single-Qubit Quantum Gates: The T-Gate

The T-gate:

WVout) = 0|V’in>=[(

| Wout>

(
|V’m

|V/out

\_

e

0)=|2 1) [O]

(
|V/m

1) =]z 4) - H






