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Lecture 14

CSCOs, Energy-Time Uncertainty, and Quasi-Bound States 

In this lecture you will learn:

•  Some more fundamentals of quantum physics: CSCOs
•  The energy-time uncertainty relation in quantum physics
•  Quasi-bound states in quantum physics
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Observables and Eigenvalue Degeneracies

Consider a particle in free-space in 3D:

The Hamiltonian is:
x
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Question: Is the energy eigenvalue of the particle enough to uniquely specify all that 
is SIMULTANEOUSLY knowable or measurable about the particle??

Answer: No! 
Momentum commutes with the free-particle Hamiltonian:

z y

And there are many different energy eigenstates which all have the same energy 
eigenvalue (i.e. the same eigenvalue for the operator                ) but which are also 
momentum eigenstates with different momentum eigenvalues:   

2ˆ 2p m

xp pe


yp pe
   2x zp pe pe 


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
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Observables and Eigenvalue Degeneracies

x
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Conclusion: The Hamiltonian has degenerate eigenvalues – meaning several different 
energy eigenstates have the same energy eigenvalue
Therefore, specifying the eigenvalue of the Hamiltonian is not enough to uniquely 
specify all that is simultaneously knowable or measureable about the particle!

How do we fix the problem?

Suppose we take both the Hamiltonian operator         and the momentum operator         
, and then ask the same question:  Are the energy and the momentum eigenvalues of 
the particle, taken together, enough to uniquely specify all that is SIMULTANEOUSLY 
knowable or measurable about this particle?? 

Answer: Yes ……..but this is an overkill. Just specifying the momentum would do.

Ĥ p̂


A particle in free-space in 3D:
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x

z y

Suppose we take just the momentum operator      , and then ask the same question 
again:  Is the momentum eigenvalue of the particle enough to uniquely specify all 
that is SIMULTANEOUSLY knowable or measureable about this particle??

Answer: Yes!

p̂


Observables and Eigenvalue Degeneracies

A particle in free-space in 3D:

xp pe


yp pe
   2x zp pe pe 



But what if the particle now has spin (e.g. an electron)????
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Observables and Eigenvalue Degeneracies

x

z y

Suppose we take just the momentum operator      , and then ask the same question 
again:  Is the momentum eigenvalue of the particle enough to uniquely specify all 
that is SIMULTANEOUSLY knowable or measureable about this particle??

Answer: No! we need to specify the spin too!

p̂


A particle in free-space in 
3D with spin:

xp pe


yp pe
   2x zp pe pe 



xp pe  


yp pe  
   12

2x zp pe pe        


The momentum AND spin of the particle, taken together, are enough to uniquely 
specify all that is SIMULTANEOUSLY knowable or measurable about this particle 

Note that spin operators commute with momentum and position operators:

, ,
ˆ ˆˆ ˆ0 0 , , ,k j k jS p S r j k x y z        
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Complete Set of Commuting Observables (CSCO) 

Consider a Hermitian operator          corresponding to an observable O of a quantum 
system:

Ô

If the Hermitian operator has all non-degenerate eigenvalues (meaning all 
eigenvalues are different) then we have a rather nice situation in which all possible 
orthogonal states of the quantum system can be uniquely distinguished by labeling it 
with the corresponding eigenvalue of      . To put it another way, measurement of the 
observable O alone can tell us all that is simultaneously knowable about the quantum 
state of the system

Ô

Ô

In this case, the operator  provides a “complete set of commuting observables” or 
a CSCO. The set here has just one observable; the operator 

Ô
Ô

ˆ
j j jO v v

j

But what if the following four eigenvalues                                of          are all the same?, , ,k m n p    Ô



ECE 3030 – Summer 2009 – Cornell University

Complete Set of Commuting Observables (CSCO) 

But what if the following eigenvalues                                of          are all the same?

Then measurement of the observable O alone, can not tell us all that is simultaneously 
knowable about the quantum state of the system. is then no longer a CSCO 

Example: Suppose O is measured and the result is       . That knowledge is not enough 
to uniquely specify the state of the system post measurement. 

, , ,k m n p    Ô

ˆ
j j jO v v

n

Ô

Question: How many observables do we need to simultaneously measure in order 
to gain full knowledge of all that is simultaneously knowable about the quantum 
state of the system?  
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Complete Set of Commuting Observables (CSCO) 

The following eigenvalues                                of          are all same, , ,k m n p    Ô

ˆ
j j jO v v

Solution to the problem:
Suppose we are able to find another operator        corresponding to an observable W
that is compatible with     :

and therefore         are also eigenvectors of        :      

Ŵ
Ô

ˆ ˆ, 0O W   
jv Ŵ

ˆ
j j jW v v

Also suppose that                            are all different, but some other eigenvalues                   
are all the same 

, , ,k m n p   

Therefore, using eigenvalues of both the operators       and         we can uniquely specify 
every common eigenstate of the system. In other words, simultaneous measurement of 
the two compatible observables O and W can uniquely specify the quantum state of the 
system post measurement

In this case, we say that the set of two operators       and       constitute a CSCO.

, ,r s t  

Ô Ŵ

Ô Ŵ
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Complete Set of Commuting Observables (CSCO) 
Formal definition of a CSCO:

Consider a set of commuting Hermitian operators                               corresponding 
to observables of a quantum system and a complete set of common eigenvectors of 
all these operators:

The set                               is said to constitute a CSCO if the set of corresponding 
eigenvalues                                   , taken together, can be used to uniquely label (or 
identify) every common eigenvector 

In other words, simultaneous measurement of all the observables A, B, C, …….. in a 
CSCO can uniquely identify the quantum state of the system

 ˆˆ ˆ, , ,..........A B C

 , , ,..........j j j  

ˆ

ˆ

ˆ

j j j

j j j

j j j

A v v

B v v

C v v













 ˆˆ ˆ, , ,..........A B C
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Complete Set of Commuting Observables (CSCO) 

Why do we care about CSCOs?

1) It is a physically motivated assumption that for any physical quantum system there 
is a complete set of commuting observables. Otherwise there would be no physical or 
measurable way to distinguish all the various states that belong to the Hilbert space of 
the system.

2) So in any physical problem we are obliged to find such a complete set, and we must 
include all compatible operators in such a set until all the common eigenvectors of the 
set can be uniquely specified by the eigenvalues of these operators.

3) A CSCO need not be unique. Once we have a complete set of commuting 
observables, adding another commuting observable causes no harm, although it is not 
necessary. But ideally, we want the smallest number of operators in the set.
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How Fast can Quantum Gates Operate? How Fast can 
Quantum States Evolve in Time?

The question “how fast can quantum computers operate?” is related to the 
question “how fast can quantum gates operate?”

A quantum gate is made of up one or more quantum operations
Are there fundamental speed limits to the speed of a quantum operation?

Are there fundamental limits to the speeds at which quantum states can evolve?
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Quantum Time Evolution Revisited

Ô

     ˆ ˆO t t O t     
ˆ

0
Hi t

t e t 


 

Consider the time-dependent mean value of an operator       :

 0t 

     
ˆ

0 0
H Ei t i t

t e t e t  
 

    

           ˆ ˆ ˆ ˆ0 0 0O t t O t t O t O t         

Suppose                     is an eigenstate of the Hamiltonian with energy E. Then:

Conclusion:                      must be a superposition of energy eigenstates for the mean 
value                            to change with time    

 0t 
   ˆt O t 

No energy uncertainty → no non-trivial time development

A measure of how fast quantum states can evolve is how fast the mean value of 
some suitable observable changes with time
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         

       

   

ˆ ˆ ˆ

ˆ ˆˆ ˆ                   
ˆ ˆ                   ,

i O t t O i t i t O t
t t t

t OH t t HO t

t O H t

   

   

 

              

 

   

  

Take the time derivative on both sides:

If the state             is a supersposition of energy eigenstates then the mean and the 
standard deviation in the energy is:

 t

     

            22 2

ˆ ˆ

ˆ ˆ ˆ
H

H t t H t

E t H t t H t t H t

 

      



     

We start from:
     ˆ ˆO t t O t 

We now assume that the state             is not an energy eigenstate but a superposition of 
energy eigenstates

 t

The mean value of the observable O will NOT change with time if ˆ ˆ, 0O H   

Quantum Time Evolution Revisited
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Energy-Time Uncertainty Relation
     ˆ ˆ ˆ,i O t t O H t

t
     



Now the standard Heisenberg uncertainty relation says:

       
   

2
2 2

ˆ ˆ,ˆ ˆ
2

t O H t
t O t t H t

i
 

   
  

    
 
 which gives:

           2 2ˆ ˆˆ
2

t O t t H t t O t
t

     
  




We define a time scale          related to the time rate of change of the mean value of the 
observable O as: 

   

   2

ˆ
1

ˆO

t O t
t

T t O t

 

 




 

OT

to get:
   2ˆ

2

2

O

O

T t H t

T E

   

   





The product of the energy standard deviation of a quantum state and the time 
scale over which the mean value of any observable evolves in time is greater than 
or equal to 2

This time scale represents a 
duration over which the 
mean value of the 
observable changes 
“significantly” 
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Energy-time uncertainty in quantum physics is not an uncertainty relation, strictly 
speaking, because time is not an operator in quantum physics

The energy-time uncertainty is a relation between the rate at which the mean value of 
an observable evolves in time and the uncertainty in the energy of the system

Energy-Time Uncertainty Relation

   2ˆ
2

2

O

O

T t H t

T E

   

   





The above relation implies that the larger the energy uncertainty of a quantum state 
(meaning larger the superposition of different energy eigenstates a quantum state is 
made up of) the smaller the time scale over which the mean value of an observable 
can change “significantly” with time 
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Energy-Time Uncertainty Relation: Gaussian Wavepacket
Consider a Gaussian wave-packet for a particle in free-space:

 
 

   
   
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p
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p
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




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 
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 
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 

 


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


 




 



 
  
          

 
  
            

 
  
          

 






x0

2

24 p


  2, 0x t 

opv
m



ppo

2
p

  2, 0p t 

 , 0p t 
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Energy-Time Uncertainty Relation: Gaussian Wavepacket

   
   
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 

 


 



 
  
          






This implies the following mean values:

   

       

        2 22

ˆ

ˆ
ˆ

ˆˆ
2 2

o

o
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t H t
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 

 
 

 
 



  


  

and the following mean square deviations:
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   
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 
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 
 

   


  


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m
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Energy-Time Uncertainty Relation: Gaussian Wavepacket

Time scale for the mean position to change significantly:

   

   

22
2

2 22ˆ 4 2

ˆ

p

p p
x

o o

t
mt x t

T p pt x t
t m m



  

 




   



 

  2, 0x t is the time taken by the wavepacket
to travel  a distance equal to its width 

xT

   2
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1
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 








  



 

  







 
Energy-time uncertainty satisfied!

  2, xx t T  

x
0

2 p


opv
m



x
0

2 p

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
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Bound States in Quantum Physics

I II III

n=1

n=2

n=3

These states are all bonafide bound states! 

A particle placed in any of these states will stay in that state inside the potential well 
forever (i.e. it has infinite lifetime for being inside the potential well)

Suppose we put a particle inside the well in state n=1 at time t=0:

 

 

   

1

1
2 22 2

2 2

0

0

Ei t

L L

L L

t

t e

dx x t dx x t

 

 

 



 

 

 

   


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I II III

These states are all quasi-bound states!

The potential barrier on the right side is not infinitely thick and there is a finite 
probability that a particle in the potential well tunnels through it

If the particle tunnels through the right barrier it will keep going and escape from the 
potential well

A particle placed in one of these states inside the potential well has a finite lifetime 
for being inside the well

How do we find the lifetimes of these quasi-bound states?

Quasi-Bound States in Quantum Physics

x02L 2L

V = U V = U IV

2d L

n=1

n=2

n=3
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I II III

n=1

Lifetimes of Quasi-Bound States in Quantum Physics

x02L 2L

V = U V = U

STEP 1:

Suppose the energy of the corresponding bound state (assuming potential barriers on 
both sides are infinitely thick) is found to be E1

One can think of this bound state as a plane wave of wavevector given by,

bouncing back and fourth between the two interfaces (recall that the magnitude of the 
reflection coefficient |r| is unity for such a bound state)

2 2
12

k E
m




ikxe
ikxe

1E
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I II III

x02L 2L

V = U V = U

STEP 2:

Find the number of times per second this confined particle hits the right barrier:

ikxe
ikxe

   
2
k m

f k
L




This is called the attempt frequency f(k) !

n=1 1E

Lifetimes of Quasi-Bound States in Quantum Physics
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x02L 2L

V = U

STEP 3:

Find the transmission probability by solving the above problem where the 
wavevector magnitude of the incident plane wave is the same as that found in STEP 1 
for the bound state

ikxAe ikxtAeikxrAe

  2t k

2d L

Lifetimes of Quasi-Bound States in Quantum Physics
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I II III

x02L 2L

V = U V = U IV

2d L

ikxe
ikxe

STEP 4:

The lifetime       of the quasi-bound state is then found as:1

n=1

    2

1

1 f k t k




Consequence of the finite lifetime:
Suppose we put a particle inside the well in state n=1 at time t=0:

 

   1

1

2 22 2

2 2

0

0
t

L L

L L

t

dx x t e dx x t

 

 


 

 

   

Lifetimes of Quasi-Bound States in Quantum Physics
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Gate Leakage Current in Silicon MOS Transistors

cE

1EEc 

NMOS Band diagram

Inversion layer
(2D Electron gas)

100 nm

A 50 nm gate MOS transistor (INTEL)

Si

SiO2

x

x

Tunnel 
current


