Lecture 13

The Ubiquitous Quantum Simple Harmonic Oscillator
(Superconducting Qubit, Light Quantization, and all that)

In this lecture you will learn:
Photonic cavity

* Particle in a quadratic potential

* Quantum simple harmonic oscillator

* Quantum superconducting qubit

* Quantum description of light and photons

N

N\

Spring constant = k

Superconducting qubit
(Google, UCSB)




Classical SHO in 1D: A Spring-Mass System

V(x)=%kx2

»
|

X

Newton’s laws and
classical equations:
dp _
| dt
Spring constant=k | dx
m -—=
dt




Classical SHO in 1D: A Particle in a Quadratic Potential

V(x)=%kx2

H=P 12
2m 2

Newton’s Laws and Classical Equations:
dpo __ov ]

= —kx
ox | Momentum and position are coupled and dynamics
dx are described two coupled differential equations

Mt P
Solutions:

x(t) = Acos(w,t)+ Bsin(w,t) _
p(t) = mBw, cos(w,t) — ma,Asin(w,t) { @y = \/;




A Particle in a Quadratic Potential: Change of Notation

V (x) ——mcogx2 { \/7
Wg = E

H = p—+ 1 ma)2x2

2m 2

Newton’s Laws and Classical Equations:

| Momentum and position are coupled and dynamics
are described two coupled differential equations

Solutions:
x(t) = Acos(w,t)+ Bsin(w,t)
p(t) = mBw, cos(w,t) — mw,Asin(w,t)




Atoms in all Materials behave like Simple Harmonic Oscillators

All crystalline materials have atoms arranged in a periodic pattern
Atoms are held in place by electrostatic forces from neighbors

Every atom behaves like a simple harmonic oscillator that is coupled to its neighbors




Quantum MicroAcoustics

A new science of quantum sound

Acoustic
microresonators are
modeled as quantum
simple harmonic
oscillators

Konrad Lehnert
JILA



A Lossless Superconducting LC Circuit

H=1cy2,]
2 2

Circuit equations:

av 1

dt C

Ld _y
dt

S N e
Superconducting qubit
(Google, UCSB)




A Lossless Superconducting LC Circuit

1 1

LI?

H=—-CV?+—
2 2

Switch circuit variables:

Define charge Q, stored in the capacitor
and the flux A, stored in the inductor as:

Q =CV
A =Ll

Q% 12
=—+

Superconductlng qublt

2
1 Google, UCSB
_Q«L 1 —Caw2A? (Goog )




A Lossless Superconducting LC Circuit

2
Q—+1C
2C 2

Circuit equations:

Compare with SHO:

2
H=L . 1ma)§x2
2m 2




Modes in a Photonic Cavity

Different modes of a
photonic cavity Wave equation:

1 0%E(F,t)
)

VxVxE(F,t) =

V.E(F,t)=0

Let:

E(F,t)= AU, (F)e 'nf

We get the following eigenvalue
equation for the mode spatial profile:

VxVxU,(r)=—U,(r)
C

v.U,(F)=0

/N /N e | .
\/ \_/ ./ Mode orthogonality and normalization:

jd3? Gm (F)Un(F) = 5n,m




An Electromagnetic Mode in a Photonic Cavity

Consider one single mode of
frequency w, a photonic - t) - _
° Er,1) =39 g

cavity:
2 VHobo

VxV xU(F) = 22 U(F)
Normalization: ¢ F[(F,t) = _qH—(t)V X (](F)
[d3F O(F).0(F) =1 VHoo

Faraday’s law: Vxé(?,t)=—%yoﬁ(i;,t) '=>#o‘mg—t(t)= .

Ampere’s law: V x H(F,t) = %eoé(?’,t)




An Electromagnetic Mode in a Photonic Cavity

Er,t) =99 g

\ Moo

A1) = -0 g GiF) _
VHoéo Compare with SHO:




Quantum SHO: A Particle in a Quadratic Potential

V(x)= —mcogx2

The Hamiltonian is:

~2
2.2

=P 1 me2x
2m 2

We assume:
_iE4

v(x,t)=¢g(x)e "
And get:

n2 o2 é(x)
2m  ax2

to ma)ox 26(x) = Ep(x)

How do we solve it??




Quantum SHO: A Particle in a Quadratic Potential

V(x)= —mcogx2

»
|

X

72 62¢(x)
2m  5x2

-t - J,Tw o, [moo }N; u JW }(x)+ hood(X) = E8(x

Try a solution that satisfies:

+— ma)ox ¢(x) E¢(x) > Factor the operator on the LHS

" If we find one, its

energy will be:
h O N /ma)o X ¢(x)=0 - gy 1
2ma, OX 2h E=_—ho,

_ 2

Mo, 2
Solution is: @(x)=Ae 2" > Need to normalize




Quantum SHO: A Partlcle in a Quadratic Potential

V(x)= —ma)g 2

h 0 mao, h 0 mao, 1 3
"o [_‘\/ 2ma, 0x "\ 2s x][‘\/ 2mae, 0x "\ 2x x]¢(x)+ 2 hood(x) = E¢(x)

1
— mowg, 2
mw, \4 - X 1

One solution is: gy (X) = (

Is this the lowest energy solution?
What are the other solutions?




New Operators

V(x)= —mcog 2

n2 o2 é(x)
2m  px2

+— ma)ox 25(x) = E¢(x)

:»hw{ J,Tw o, [mo }N; o [moo }¢(x)+ hou(x) = E4(x

A

at é

— 1 ,’5+ ma, X Commutation relation
2mho, 27 A

- — [é,é’f]=1=1\

i / L p+ |T%
_ With a little abuse
2mha)o Zh of notation




Hamiltonian in Terms of the New Operators

V(x)=%mco§x2 [5,5 :|=1

—

~

~ " )7) a . A A
H = —+—ma)§x2 = &(aTa+ aaT) = hwo(afa+—

2
\/['éf]=1

a,




The Number Operator

V(x)= —ma)g 2

0

H = ha)o( a+ 1)
2

The energy eigenstates are given by:

H|g)=E|¢)
:hwo( aTa+— )|¢> E|¢)

Consider the operator (called the “number operator”):
If we can find eigenstates and eigenvalues
n= éTé of the this operator, then we have the
eigenstates and eigenvalues of the
Hamiltonian




Creation and Destruction Operators

h=ata 5,57 |=1

1) The operator fj = aTa can only have non-negative eigenvalues

Suppose |V|Z| is an eigenstate of n = a'a and 1 isthe corresponding
eigenvalue. Now consider the norm of the state: |u) = a|v)

(uluy=0

= (v|aTalv)>0
= (v|n|v)=0
= A(v|v)=0
=120

2) If |v) is an eigenstate of ) with eigenvalue 4 then a|v) is also an eigenstate
with eigenvalue 4 —1

a is called the “destruction” operator \

A(a|v))=ataa




Creation and Destruction Operators

f=ata [é,é ]:1

3) If |V> is an eigenstate of n with eigenvalue A then at |v> is also an eigenstate
with eigenvalue 4 +1

A(aT|v))=ataat|v) = aT(aat)v)=at(aTa+1)|v)=aT (A+1)|v)=(2+1)a"|v)

al is called the “creation” operator




Properties of the Number Operator
4) The smallest eigenvalue of n is 0 and all eigenvalues of n are integers

"|>ﬂ|>

v))
&% |v

‘)
é3|v>)

/

= ﬁ(ép‘1 |v>) =(A-p+ 1)(:&“"1 |v>)
. R For some integer p we will have:
= "(ap|v>)=(’1'p)(ap|">) ' > (A-p)<0 Not allowed!!

So it must be that acting with @ on the state 3P |v) must not give another state in
the Hilbert space but give a zero instead:

a(aP'v))=0 = a'a(a""|v))=0
= A(a""|v))=0 _

hat can only happen if (/1 —p+ 1) =0 forsomep
Mat means A was an integer and all eigenvalues of n are integers!!!




Properties of the Number Operator
fi=ata 5,57 |=1

5) The eigenstates of n are written as |n> and are labeled by their eigenvalue n
A|n)=n|n)

6) Since pn is Hermitian, its eigenstates are orthonormal and form a complete set:

o0 ~
(nlm) =8, > |n)(n|=1
n=0
7) The smallest eigenvalue of n is 0 and the corresponding eigenstate is |0>
40)=0
= n|0)=0

8) From properties (2) and (3):

(aln)) = (n—1)([n))

ﬁ(éT |n>) =(n+ 1)(5T |n>)



Properties of the Number Operator

fi=ata 5,87 |=1

8) Given: ﬁ|n> — n|n> we know that: 3T |n> o |n+ 1>
Let: al|n)= A|n+1)

N AN

= (n|aat|n)=|AP (n+1n+1)=|Af

= |AP = (n|aaf|n) = (n|ata+1)n) = n+1

- A=J/n+1
at|n)=n+1n+1)

9) Given: ﬁ|n>=n|n> we know that: 5|n>oc|n—1>

Let: 5|n>=A|n—1>
= (n|a%a|n)=|Af (n-1|n-1)=|Af

= |A = (n|afa|n)=n

= A=+n

aln)=+/n|n-1)| =——> [a]0)=0




Properties of the Number Operator
fi=ata 5,87 |=1

10) All eigenstates of n can be written as:

0)
= [1)=4"|0)

at)’
Gl

at)’
:»|3>=(ﬁ)! o




Quantum SHO: Summary of Results

[a,af]=1

Eigenstates and Eigenvalues:

n|n)=n|n)

(n[m) = pp,
n=0
Actions of Creation and Destruction Operators:

éT|n>=\/n+1|n+1>

aln)=+/n|n-1)| ——




Quantum SHO: Hamiltonian and Energy Eigenstates

hao,

Zero-point
energy —» n=0

0
~ At A 1 ~ 1
H=rn aa+—|=ha,| N+
“’( 2) “’( 2)

The eigenstates |n> of the number operator p are also the eigenstates of the
Hamiltonian:

I:I|n>=hwo(ﬁ+%)|n>=hwo(n+%)|n>

Therefore, the eigenvalues of the Hamiltonian are:




Quantum SHO: Wavefunctions

#n (x) = (x|n)

=1 P+ X
2mho, 2h

The lowest energy eigenstate satisfies:

4]0) =

This means:
(x|a]0)=0

i




Quantum SHO: Wavefunctions

#n (x) = (x|n)

I\T - 1 ~ ma)o n
a =-—I P+ X
2mha, \ 27

The n-th eigenstate is:




Quantum SHO: Wavefunctions

¢ (x)|°

g (0f

\¢1(x)\

P oo
% oy (x)[°

ma)
o ]Hermlte -Gaussians

¢n(x>=¢o<x)[ﬁ

Note: Wavefunctions have even or odd parity




Quantum SHO: Wavefunctions
Wavefunction in position basis: i
1

(x]0) =gy (x) =(n:;°)ze_ 2n *

h
2ma,

= (A%%) = (0| Ax?|0) =

Wavefunction in momentum basis:

—igx

<p|0>=¢o(p)=idX¢o(X) J; =ﬂ[

rmho,

mna,
2

= (ap%) = (0| Ap?|0) =

Position-momentum uncertainty product:

% (p)

Min value allowed by the
Heisenberg relation




A SHO as a Qubit

Hamiltonian:

~2
H = p—+1ma)2x2
2m 2

Use the lowest two circuit states as
your qubit !!

lv)=al0)+B]1)

Problems:

-All states have equal energy spacings

-This makes qubit operations impossible (one can accidentally put the circuit in

one of the higher energy states during computation)

-Need to have just two energy levels (unless multilevel qubit logic is desired)
How do we perform single qubit logic operations?




A Lossless Superconducting LC Circuit

Compare with SHO:

2
H=L . 1ma)§x2
2

2m

2
Q_+1C
2C 2

Circuit equations:




A Quantum Lossless Superconducting LC Circuit

The macroscopic quantum state of the
circuit is described by a vector | y/(t)>in a
Hilbert space

Charge and flux, and voltage and current,
are observables and the corresponding
operators are:

Q =CcV i =L

A circuit has many measurable physical degrees of freedom:

e There are billions and billions of electrons and atoms in the wires,
capacitor plates, etc. Each electron/atom has position, momentum,

spin, etc, as observables. These are the microscopic degrees of freedom of
the circuit.

e We are interested here in only the macroscopic electrical degrees of
freedom of the circuit and will make a quantum description of only

these degrees of freedom. That such a macroscopic quantum description is
possible, without taking into account all the microscopic degrees of freedom,
is quite remarkable.




A Quantum Lossless Superconducting LC Circuit

The quantum state of the circuit 1
is described by a vector‘ y/(t)> in { W, = s
LC

a Hilbert space

C ith:
Charge and flux, and voltage and ompare wi

current, are observables and the
corresponding operators are:

~n

Q =CV i =Ll

The energy becomes the Hamiltonian operator :

~2
A= 4 lcp2i2
2C ' 2

Postulate the following commutation relation:

[i,é]=ih




A Quantum Lossless Superconducting LC Circuit

Charge and flux, and voltage and 4
current, being all observables,
become operators

~

Q =CV i =L

Postulate complete basis states formed
by charge and flux eigenstates:

Pla)=al2) dla)-ala)

400 dQ
I -

o 27

Example:

If |t//> = |/1> then the inductor flux is certain but the

capacitor charge is very uncertain (because the quantum

state |y/> is a superposition of different capacitor charge
ates)

1
[

Compare with:




A Quantum Lossless Superconducting LC Circuit

The energy becomes the
Hamiltonian operator :

Define:




A Quantum Lossless Superconducting LC Circuit

The Hamiltonian operator is:

A2
H = Q—+ 1 C(oz/l2
2C 2

The Hamiltonian operator becomes:

I:I=hwo(ﬁ+%)=hwo(éTé+—

E3=

The circuit has been
quantized !!!




A Lossless Superconducting LC Circuit

A

Suppose the circuit is in its lowest
energy state:

v)=10)

- 1
Al0) = 1 nay 0

The inductor flux is measured in the circuit.
What is the a-priori probability of finding the

result “A” :
1

(o 1 - a0 ~po(a )7 =[S e o

2 tProbability
f‘”’W |W>‘ =1 distribution of flux

K/?, |0>‘2 Zero-point quantum
fluctuations in flux
! >

’

Compare with SHO:
~2

H = p—+ 1ma)
2m 2

2.2

Q op

I ox
Com
Wy © O,

1

2 (Mg \a — o x?
(x|o)f <[ M20)f " 2
h

—




A Lossless Superconducting LC Circuit

Suppose the circuit is in its lowest
energy state:

v)=|0)
110) =2 1, [0)

The inductor current is measured in the circuit.
What is the a-priori probability of finding the
result “/” :

Since the inductor current and inductor flux operators are related by a constant: A = Li

[y =+L|A=LI)
The probability distribution function for the current will be:
1 L o,
I

L 2 - tProbability
KI |V’>‘2 = LK’% |V’>‘2L [ = (ﬂhw ] e " distribution of current
= o

ot o) =2 AN
Zero-point quantum >

fluctuations in current
0




A Lossless Superconducting LC Circuit

Suppose the circuit is in its lowest
energy state:

v)=10)

- 1
Al0) = 2 na, 0

The capacitor voltage is measured in the circuit. What
is the a-priori probability of finding the result “V” :

Since the voltage and the charge operators are related by a constant: é - CcV

v)=Jcla@ =cv)

The probability distribution function for the voltage will be:
1 _C V2 N
C ]2 o "% . Probability

rha, distribution of voltage

Zero-point quantum
fluctuations in voltage




A Lossless Superconducting LC Circuit

A coo=,/%=10GHz

Suppose the circuit is

in its lowest energy — =2710° rad/s
state: I L =0.25 nH
i C=1pF

tProbability

distribution of current ,

RMS zero-point current quantum fluctl.Jations:
\ a,=,/<Ai >=,/h“’° ~0.12 LA
2L
! ?

0

RMS zero-point voltage quantum fluctuations:

. Probability

distribution of voltage -
? av=,/<AV2>=‘/h2aé’ ~1.8 uV




A Lossless Superconducting LC Circuit: Commutation Relations

Voltage and current are non-commuting

operators:
Q =cv i-=Li

4.0

- ih
[V Lc

Accurate simultaneous measurement of both the charge and flux is not possible

Accurate simultaneous measurement of both the current and voltage is not possible

|:I ‘7:| [ihc i F°<rAt;‘e>9"°;t1an): state:

) ) 2 2 2 2 4 2L
<AIZ><AVZ> = 4[1202 - Z,ng - ’ 4(00 <A\72> _ ho,
2C




A Lossless Superconducting LC Circuit as a Qubit

Circuit Hamiltonian: I-AI=§+1Ca)2/i2
iIrcul amiitonian. ) 2C 2 (o)
|

Y
Potential

/ -

Use the lowest two circuit states as |1>
your qubit !!

lv)=al0)+B|1) 0)

=

Problem: 0

-All states have equal energy spacings

-This makes qubit operations impossible (one can accidentally put the circuit in
one of the higher energy states during computation)

-Need to have just two energy levels (unless multilevel qubit logic is desired)

ow do we perform single qubit logic operations?




LThe Inductively Shunted Jasephfon Junction Qubit

Flux quantum
wh
Ao =—
e

Josephson
Junction

Ao .
H =Q—+1Cw§/12 —E, cos 27:'1— +E,
2C 2 . Ao

\ yl J
I

Potential Total potential




The Inductively Shunted Jasephion Junction Qubit

Josephson
Junction

~2
= Q—+1Ca)c2,/12
2C 2

—-E, cos[an—]+EJ

(0]

Only two confined energy levels near the
potential minimum. Problem solved !

-

/ Anharmonic
potential




E(F, t) — 9de (t)

VHobo

H(F,t)=—

An Electromagnetic Mode in a Photonic Cavity

qn(t)

VHoéo

U(F)

V xU(F)

Wave equation:

2

VxVxU(F) = w—‘z’U(F)

gemmm—

C

Compare with:

2
_ P malx?
2m 2




A Quantized Electromagnetic Mode in a Photonic Cavity

The quantum state of the electroma netic
mode is described by a vector y/(t) ina
Hilbert space

Electric and magnetic field of the mode are
observables and the corresponding operators

H_ v, J(F)
Hoéo

The energy becomes the Hamiltonian operator :

~_ GE 1
H=—"+—-
2, " 2 /‘owqu

Postulate the following commutation relation:

[&H’éE] = In

m—

Compare with:

~2
2

A p—+;mwx

2m




A Quantized Electromagnetic Mode in a Photonic Cavity

Fields become operators and so do g and q,:

E(F) _ qde

\ Moo

W _ v J(F)
\ Moo

Postulate complete basis states formed by q- and q,
eigenstates:

~n

ﬁH|QH>=QH|QH> QE|QE>=QE|QE>

400 N
| day|ay)(qy| =1

m—

Compare with:




A Quantized Electromagnetic Mode in a Photonic Cavity
Fields become operators:

p—

Compare with SHO:

~2
H=L . 1ma)§f(2
2m 2

[ x,p]=in




A Quantized Electromagnetic Mode in a Photonic Cavity

Fields become operators:

E:(F) _ qde

\ Moo

_q_HV v, [](f)
VHofo
The energy becomes the Hamiltonian operator :

,:IQE1

—E+ — oo
24, 2/”0 qu

The Hamiltonian operator becomes:

~ ~ 1 N
H=hcoo(n+5)=hwo(a a+5)

The eigenstates and eigenvalues are:

H|n) = ha)o(n+ )|n> hwo(n+ )|n>

’Compare with SHO:

~ p2 1
H p—+ ma)zx2

2m 2

gy <> X
Ho <> M

g

W, > @

==

The electromagnetic mode
has quantized energies!!!




A Quantized Electromagnetic Mode in a Photonic Cavity

The eigenstates and eigenvalues are:

I:I|n>=hwo(ﬁ+%)|n>=hwo(n+%)|n>

1
|0> [ D Ehwo State with no photons (vacuum!!)
=[1)=aT|0 : (1
K ( | )>2 g \E+1)hwo State with one photon
At
a /
= [2)= 21 0) 1 y \%+ 2)71070 State with two photons
. (éT)n : y 1 inhe State with n phot
:|n>=ﬁ|o> 2 o ate with n photon

Why does a state with no photons — the vacuum - has energyiha)o ?




The Field Operators; Quantum Field Theory
Fields become operators:
de qy

VHoéo

LIy (a+aT)vx0(F)
Ho \ 2600

Mean value of the fields in the zero photon number state:

(0|E(F)|0) = (0|H(7)|0) = 0

Mean value of the fields in any photon number state:

(n|E(7)|n) = (n|H(F)|n) = 0




A Quantized Electromagnetic Mode: Vacuum Fluctuations

|0> : Why does a state with no photons has

1
energy Eh“’o?

The Hamiltonian operator is:
1 2,

~n

H=jd3F[EgOE(r .

G2 1 2.0
= +— U @5qh = hay| N+—
Zﬂo 2/‘0 odH o( 2

-~ 1
>=<0|ha)o(n+§

The vacuum is not exactly a vacuum!!
t has fluctuating electric and magnetic fields!!




A Quantized Electromagnetic Mode: Vacuum Fluctuations

I:I=jd3f[1
2

_ e
24

Suppose the quantum state of the mode was |0>

If a measurement is made of the magnetic field amplitude
what is the a-priori probability of measuring q, ??

Answer:

1

2 By 2
)2 _/‘oh qu
e

(ol O o) =222




A Quantized Electromagnetic Mode: Commutation Relations

The commutation relation between the field
amplitudes is:

[y, qe |=in

Accurate simultaneous measurement of both the
electric and the magnetic field amplitudes is not
impossible

= [c’iH’éE] = in

(adh) a2 7




Appendix: The Josephson %u)nction -1
V (¢t

V(t) I1(t)+ I C ~ Superconductor
I(t) + - I(t) ‘ gauge invariant
Josephson |:> e I, (t) — < phase difference

: — A® = O1 —
Junction o1 T 2 I =01~ Q2

|_'_l
Superconductor

Insulator

- tunneling element

The Josephson junction relations:

av(¢) iﬂ E, sin(Agp(t))

o

Superconductor
tunneling current

1) I(t) =1 (t)+ L (t)=C

dt




Appendix: The Josephson Junction - I
Ap =p1— @,

av(¢) iﬂ E, sin(Ap(t))

(0]

I(t)=C

Josephson
Junction

At
3) A¢(t) =27 /f ) +27n The superconductor phase difference can

(o) be related to the trapped flux

dV(t) 27 A(t)
= I(t)=C % T E, SIﬂ[ZﬂTJ

(0] (0]

Energy stored in the junction:

| [m@ﬂ:i dt [cv(r)dv(t)+2”E_, ‘”(’)s.n[zﬂ—

o dat 4, ° dt

'1; ]d,l(t) = %CVZ (t)-E, 605[2ﬂ¥]+54 SCEUN

(o]




Appendix: The Capacitively Shunted Josephson Junction Qubit:

—1 =

Transmon

~n ~n

Q=Q,-Q,=C,V-C,V

—E cos(Ap)+E,

Potential
! A ! Hilbert
,<—

[A(b ,Q ]=2|e|i

Transmon limit:

B

Q2
Z[CJ+

]—EJcos(A¢)+EJ ~




