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Lecture 10

Commutation Relations, Measurements, Disturbances, and 
Heisenberg Uncertainty Relations

In this lecture you will learn:

•  Heisenberg uncertainty relations in quantum physics
•  Operator commutations and Heisenberg uncertainty relations

Werner Karl Heisenberg
(1901 – 1976)
Nobel Prize 1932
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Mean Values, Standard Deviation, and Uncertainty
Consider an observable O (could be position, energy, momentum, spin, etc)

The mean value of the observable O with respect to a quantum state         is:
ˆO O 

Sometimes the same mean value is also written as:

ˆ ˆO O 

Note the carrot

The standard deviation in the value of O is given by:

   2 222 2

22

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ    

O O O O O O O

O O

  

   

     

 

22ˆ ˆ
OO O O       

The a-priori uncertainty O in the value of O is given by:
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Eigenstates and Uncertainty - I
Consider an observable O (could be position, energy, momentum, spin, etc) of a particle

The corresponding operator       has the following complete set of eigenstates:Ô

ˆ
j j jO v v

Suppose the quantum state          of the particle is an eigenstate of the operator      : Ô

Mean value of O:
ˆ ˆ ˆ

m m mO O v O v    

mv 

Standard deviation or the a-priori uncertainty in the value of O:

222 2 2 2 2ˆ ˆ ˆ ˆ 0O m m m m m mO O v O v v O v            

Lesson I: 
If the quantum state is an eigenstate of an observable O then the a-priori uncertainty in 
the value of O is zero and the value of O obtained if a measurement is performed will be 
the eigenvalue corresponding to this eigenstate
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Eigenstates and Uncertainty - II

Ô

ˆ
j j jO v v

Suppose the quantum state          of the particle is:

Mean value of O:
2ˆ ˆ

j j
j

O O a    

j j
j

a v  

Standard deviation or the a-priori uncertainty in the value of O:
2

2 222 2 2ˆ ˆ 0O j j j j
j j

O O a a      
 

      
 

Consider an observable O of a particle

The corresponding operator       has the following complete set of eigenstates:

Lesson II: 
A-priori uncertainty in the value of an observable O arises when the quantum state is in 
a superposition of the eigenstates of the observable O
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Properties of Wavefunctions: Position Uncertainty
 xSuppose the wavefunction of a particle is

The mean position is:

The standard deviation for position is:

   *ˆ ˆx x dx x x x     

 2 22 2 2ˆ ˆ ˆ ˆ ˆx x x x x x      

The a-priori uncertainty x in the position is defined as:

2ˆxx x   

ˆ ˆ ˆx x x  
x

x   2x

Define: x̂

 dx x x 



 
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Define:

The mean momentum value is:

The standard deviation in momentum is:

       * *ˆ
2

ˆ ˆ ˆ

dpp dx x x p p p
i x

p p p

   


     
  



 2 22 2 2ˆ ˆ ˆp p p p p p      

The  a-priori uncertainty p in the momentum is defined as:

2ˆpp p   

Properties of Wavefunctions: Momentum Uncertainty

   

pi x
ep p dx x  


  




p

p

|(p)|2

The momentum space wavefunction is:

p̂
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Position and Momentum Uncertainties

x

x   2x

p

p

|(p)|2

What can we say about                     and                  ?           

The  a-priori uncertainty in the 
momentum is defined as:

The a-priori uncertainty in the 
position is defined as: xx   pp  

xx   pp  
Question:

x̂ p̂
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Commutation Relations in Quantum Physics
Operators in quantum physics don’t always commute:

This property is usually expressed in terms of the commutation relation or the 
commutator:

ˆ ˆ ˆ ˆ ˆ ˆ,A B AB BA    

ˆ ˆ ˆ ˆAB BA

Lets find the commutation relation between position and momentum:

ˆ ˆ ˆˆ ˆ ˆ, ?x p xp px    
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Position-Momentum Commutation Relation

Let: ˆ ˆ ˆ ˆˆ ˆ ˆ,x p xp px c    

We sandwich the above between         and          and see what happens:x 

 ˆ ˆˆ x
x xp x x p x

i x


 


 




   
ˆ

ˆ
x

x x x x x x
 

   



  

 

   

ˆ ˆˆ

               

x
x px x p

i x
x

x x
i i x


 





 




 




 

1) 

2) 

ˆ ˆ ˆ ˆˆ ˆ ˆ,x x p x xp px x c      

 ˆ ˆ ˆ ˆˆ ˆ ˆ,x x p x xp px i x x c         3)

4) Since the above is true for any arbitrary           it must be that: ˆˆ 1c i 

ˆˆˆ , 1x p i i     

We need to find ĉ
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Position-Momentum Commutation Relations in 3D

Different components of position and momentum commute!

ˆ ˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆ ˆ

x y z x x y y z z

x x y y z z

r xe ye ze r e r e r e

p p e p e p e

     

  





If:

Then:

ˆ ˆ,

ˆ ˆ, 0

ˆ ˆ, 0

j k jk

j k

j k

r p i

r r

p p

   
   
   



{ where: j,k = x,y,z

ex , ey , and ez are the 
Cartesian unit vectors
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Commutation Relations and the Uncertainty Principle
Suppose two Hermitian operators have the following commutation relations:

ˆˆ ˆ ˆ ˆ ˆ ˆ,A B AB BA iC     

Consider an arbitrary quantum state: 

   2 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
A

A A A A A

A A A A A

 

  

    

     

   2 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
B

B B B B B

B B B B B

 

  

    

     

Consider the mean values of the operators and the standard deviations wrt to this 
quantum state:

Question: what can we say about the uncertainty product from the commutation relation:

2 2 2 2ˆ ˆ ?A B A B     

ˆˆ ˆ,A B iC    

And       is Hermitian tooĈ
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Commutation Relation and Uncertainty Principle
ˆˆ ˆ ˆ ˆ ˆ ˆ,A B AB BA iC     

Consider an arbitrary quantum state: 
Now consider the state:  ˆ ˆA i B     

   
 
 

2 2 2

2 2 2

2 2 2

2 2 2

2
2 2

2
2 2

0
ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ, 0

ˆˆ ˆ 0

ˆˆ ˆ 0

ˆ ˆ ˆ4 0

ˆ
ˆ ˆ

4
ˆ

4A B

A i B A i B

A B i A B

A B C

B C A

C A B

C
A B

C

 

   

   

   

   

 

 

 
 



       

         

     

     

      

 
    

 
  

 is real

2
2 2

2
2 2

ˆˆ
4

4x p

x p

 

   

 





Special case:

2 0a b c   

This can only happen if:
2 4 0b ac 

And       is Hermitian tooĈ

ˆˆ ,x p i   
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Position and Momentum Uncertainties

x

x   2x

p

p

|(p)|2

What can we say about                     and                  ?           

The  a-priori uncertainty in the 
momentum is defined as:

The a-priori uncertainty in the 
position is defined as: xx   pp  

xx   pp  

2x p  


Answer:

x̂ p̂
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Heisenberg Uncertainty Relation: Statement #1

For any quantum state        , the product of the position and momentum uncertainties 
satisfy:

2x p  


The Heisenberg principle stated as above is a statement about the a-priori uncertainties 
in the position and momentum of a particle (i.e. before any measurement is actually 
made)

p

p

|(p)|2

x

x   2x



x̂ p̂
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Commutation Relation and Uncertainty Principle
Suppose two Hermitian operators do commute:

ˆ ˆ ˆ ˆ ˆ ˆ, 0A B AB BA     
Then they can have a common set of eigenvectors:

ˆ

ˆ
j j j

j j j

A v a v

B v b v





Suppose we take:

Then:
mv 

   2 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ 0

m

A

A A a A A A

A A A A A

 

  

     

      

   2 22 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ 0

m

B

B B b B B B

B B B B B

 

  

     

      

2 2 0A B  
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0

x post


|(x)|2

x

x   2x

If a measurement is made to determine the position of a particle with an accuracy of  , 
then after the measurement the uncertainty x|post in the position of the particle in the 
post-measurement quantum state must satisfy:

Heisenberg Uncertainty Relation and Measurement Induced 
Disturbances

x post  

Before measurement After measurement: 
collapsed wavefunction

Measurement 
of position

Result was near xo

xxo

After the measurement the uncertainty p|post in the momentum of the particle in 
the post-measurement quantum state must satisfy:

2 2p post x post



 


 

x̂0
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If a measurement is made to determine the position of a particle with an accuracy of  
x = x|post , then after the measurement the uncertainty p|post in the momentum of the 
particle in the post-measurement quantum state must satisfy:

Heisenberg Uncertainty Relation: Statement #2

2p post x post







If a measurement is made to determine the momentum of a particle with an accuracy of 
p = p|post , then after the measurement the uncertainty x|post in the position of the 
particle in the post-measurement quantum state must satisfy:

2x post
p post







Written this way, Heisenberg relations are not statements about a-priori uncertainties 
in wavefunctions. They tell us that for two non-commuting observables, more the 
accuracy of the measurement of one observable, less the certainty in the value of the 
other observable post-measurement

In other words, measurements cause unavoidable disturbances !!!
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The Heisenberg Microscope and the Uncertainty Relation
Werner Heisenberg considered the following thought experiment to measure the 
location of an electron with an optical microscope

Microscope
Objective

D


f

The spatial resolution of a microscope is given by:

So after the electron position has been measured, the 
remaining uncertainty x in its position post-measurement
must be: 

sinNA 

 2 2 2 2sinNA D f
  


 

2sin
x 


 

x

y

Next, we find the uncertainty px in the x-component of 
the momentum of the electron post-measurement
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The Heisenberg Microscope and the Uncertainty Relation

Microscope
Objective

D


f

sinNA 

x

y

Consider the light ray shown, that comes from the 
microscope at an angle , bounces off the electron, 
and goes back into the microscope with an angle  :

Photon momentum:
2p 






Incident photon momentum y-component:

2 cosinc
yp  






Incident photon momentum x-component: 2 sininc
xp  






Once the photon has bounced off the electron, momentum 
conservation requires:

inc ref
x x xp m v p  

Suppose the electron was initially sitting at rest

inc ref
y y yp m v p  

 2 sin sininc ref
x x xm v p p   


    


This implies:


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The Heisenberg Microscope and the Uncertainty Relation

Microscope
Objective

D


f

sinNA 

x

y

Consider the light ray shown, that comes from the 
microscope at an angle , bounces off the electron, 
and goes back into the microscope with an angle  :



Suppose the electron was initially sitting at rest

 2 sin sininc ref
x x xm v p p   


    


The momentum kick to the particle is then : 

The mean square average momentum kick to the particle 
is of the order:

 2 2 sin~x xp m v  
 

     



So the product of the post-measurement uncertainty in the 
position and momentum of the particle is:

2 sin~ ~
2 sinxx p   

  
 

 
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The Heisenberg Microscope and the Uncertainty Relation

Heisenberg’s uncertainty principle is not a about the problems or difficulties in 
making accurate measurements

To say that the particle really has some well defined values of both momentum and 
position, and we just can’t measure both accurately, would be completely wrong

What would be correct is that neither the particle has well defined values of both 
momentum and position, and nor can we ever measure them both accurately. 

Furthermore, Bohr’s Copenhagen interpretation emphasizes that if one cannot ever 
simultaneously measure two things accurately, in a very fundamental way, then one 
should not ascribe simultaneous physical reality to them in the first place!    
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Measurements, Disturbances, and Reality

“We can no longer speak of the behaviour of the particle independently of the process 
of observation. As a final consequence, the natural laws formulated mathematically in 
quantum theory no longer deal with the elementary particles themselves but with our 
knowledge of them. Nor is it any longer possible to ask whether or not these particles 
exist in space and time objectively ... When we speak of the picture of nature in the 
exact science of our age, we do not mean a picture of nature so much as a picture of 
our relationships with nature. ...Science no longer confronts nature as an objective 
observer, but sees itself as an actor in this interplay between man and nature. The 
scientific method of analyzing, explaining and classifying has become conscious of its 
limitations, which arise out of the fact that by its intervention science alters and 
refashions the object of investigation. In other words, method and object can no 
longer be separated.”

Werner Heisenberg in “The Physicist's Conception of Nature”
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Measurements, Disturbances, and Commutation Relations
Suppose two Hermitian operators, corresponding to two observables, have the 
following commutation relations:

ˆ ˆ, 0A B   

Consider an arbitrary quantum state:

We are going to make simultaneous measurement of observables A and B on the 
state 

Simultaneous measurements mean that the measurements are made in succession, 
one after the other, so fast that there is NO significant time-evolution in between two 
successive measurements and so we can forget about time-evolution in what 
follows



Also suppose that these operators have the following eigenvectors and eigenstates:

ˆ
j j jA a a ˆ

j j jB b b

Also suppose that the eigenvalues are all different


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Measurements, Disturbances, and Commutation Relations

1) Suppose we first make a measurement of the observable A:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 



m

 m m m ma a a a 
Normalize

ma

2) Suppose we make a second measurement of the observable A right after the first one:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 

ma

m

 m m m ma a a a

A-priori probability for this particular result 2
ma 

A-priori probability for this particular result 1

Eigenstate of observable A

Repeated measurements of observable A does not change the result
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Measurements, Disturbances, and Commutation Relations

1) Suppose we first make a measurement of the observable A:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 



m

2) Suppose we then make a measurement of the observable B:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 

ma

n

 n n m n m nb b a b a b

A-priori probability for this particular result 2
ma 

A-priori probability for this particular result 2
n mb a

Eigenstate of observable A

 m m m ma a a a 
Normalize

ma

Normalize
nb

Lets try again:
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Measurements, Disturbances, and Commutation Relations

3) Suppose we then again make a measurement of the observable A:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 

j A-priori probability for this particular result 2
j na b

 j j j n ja a a b a 
Normalize

ja

nb

The measurement of observable B has disturbed the quantum state so that the 
subsequent measurement of observable A again does not give the same result as it 
did the first time!

We say that:

- A and B are incompatible observables
- They cannot BOTH be measured simultaneously with arbitrary accuracy
- Measurement of one of them disturbs the value of the other one

So when are two observables, A and B, compatible observables?? 

Eigenstate of observable B
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Measurements, Disturbances, and Commutation Relations
Two Hermitian operators, corresponding to two observables, are compatible if they 
commute:

ˆ ˆ, 0A B   

If two operators, corresponding to two observables, commute then the 
corresponding observables are compatible and can both be measured 
simultaneously with arbitrary good accuracy 

If two operators commute, they can have a common set of eigenvectors:

ˆ
j j jA a a ˆ

j j jB a a

Also suppose that the eigenvalues are all different …………PTO

The man idea:
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Measurements, Disturbances, and Commutation Relations

1) Suppose we first make a measurement of the observable A:

State just before the measurement: 

Result of the measurement: 

State just after the measurement (after collapse): 



m

2) Suppose we then make a measurement of the observable B:

State just before the measurement: 

Result of the measurement: 

State just after the measurement: 

ma

m

 m m m ma a a a

A-priori probability for this particular result 2
ma 

A-priori probability for this particular result 1

Eigenstate of observables A and B

 m m m ma a a a 
Normalize

ma

Lets try again, now for compatible observables:

Remains the same as the 
one before the 
measurement of B
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Measurements, Disturbances, and Commutation Relations

3) Suppose we then again make a measurement of the observable A:

State just before the measurement: 

Result of the measurement: 

State just after the measurement: 

m
A-priori probability for this particular result 1

ma

The measurement of observable B has not disturbed the quantum state so that the 
subsequent measurement of observable A again gives the same result as it did the 
first time!

We say that:

- A and B are compatible observables
- They can BOTH be measured simultaneously with arbitrary accuracy 
- Measurement of one of them does not disturb the value of the other one

 m m m ma a a a

Eigenstate of observables A and B

Remains the same as the 
one before the 
measurement of A
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Uncertainty Relations and Confinement

Consider the problem of a particle in an 
infinite potential well

Question: Why is the lowest energy not just 
equal to zero? 

Suppose the lowest energy were zero and the particle then is at rest somewhere 
inside the well. But then since we know that the particle is at rest somewhere inside 
the well, the standard deviation in its position must be:  

 
2ˆˆ ˆ

2
pH V x
m

 

2
2~ ~

2 4x x
L L 

From Heisenberg uncertainty relation:
2 2

2
2 24p
x L




 
 

The average energy of the particle is then: 
22 2

2
ˆ 1ˆ

2 2 2
ppH

m m m L
      

 

 There is no way the particle 
can have zero energy when 
it is CONFINED



ECE 3030 – Summer 2009 – Cornell University

Commutation Relation with Hamiltonian and Time Evolution
Consider an observable O and the corresponding operator            

The mean value of the observable at time t is given by:

where:

Ô

     ˆ ˆO t t O t 

   
ˆ

0
Hi t

t e t 


 

Now suppose the observable commutes with the Hamiltonian:

Then:

ˆ ˆ, 0O H   

         

   
   

 

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ0 0

ˆ          0 0
ˆ         0 0

ˆ         0

H Hi t i t

H Hi t i t

O t t O t t e Oe t

t e e O t

t O t

O t

   

 

 

 

 

   

  

  

 

 

 

When an operator commutes 
with the Hamiltonian, its mean 
value is time-independent !!

ˆ ˆ, 0O H   Since:
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