
 

 1

Department of Electrical and Computer Engineering, Cornell University 
 

ECE 4060: Quantum Physics and Engineering  
 

Fall 2020 
 

Homework 9     Due on Dec. 02, 2020 by 5:00 PM (via email) 
 
 

 
Problem 9.1: (Coupled Simple Harmonic Oscillators) 
 
You might be surprised to know that in the standard model of Physics almost the entire universe 
and all matter, forces, and energy in it can be described as one big set of coupled simple 
harmonic oscillators. This is how quantum field theory describes this universe. And the model 
works for everything ……..well, almost everything except gravity. Here we will consider a much 
simple problem of two coupled simple harmonic oscillators. But the importance such models 
hold for physics cannot be overestimated.   
 
Consider two coupled simple harmonic oscillators: 
 

 
The Hamiltonian is, 
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The coupling is introduced by the coupling spring in between the two masses. One can define 
new position operators (to get rid of the offsets), 
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and write the Hamiltonian as, 
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Note that the Hamiltonian is really describing a composite system of two different masses, 1 and 
2, so if one really was trying to be very particular about the tensor notation used to describe 
composite systems, one should write the Hamiltonian as follows, 
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But literally nobody writes the Hamiltonian using the full tensor notation. So I will stick to the 
simpler notation, 
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Note that the only non-zero, commutation relations are, 
 1 1 2 2ˆ ˆˆ ˆ, ,y p i y p i           

One can switch to creation and destructor operator notation by defining, 
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The Hamiltonian becomes, 
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You can see the problem now. If you consider a tensor product of the standard number states, 

1 2
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then these states will be the eigenstates of the first two terms in the Hamiltonian but will not be 
eigenstates of the last coupling term in the Hamiltonian, and therefore these states will not be the 
eigenstates of the full Hamiltonian. What to do now? 
 
Here one can employ a very standard technique in physics where one decomposes the problem 
into center-of-mass coordinates and relative coordinates. This works nicely if m1=m2. You will 
see that in these new coordinates, the two coupled simple harmonic oscillators will appear as 
two new uncoupled simple harmonic oscillators that can be solved independently using 
standard techniques and then a tensor product of their respective number states will be a valid 
eigenstate of the full Hamiltonian.     
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Define two new coordinate operators as follows, 
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R̂  is the operator for the center-of-mass coordinate, and r̂  is the operator for the relative 
coordinate. The corresponding momentum operators are defined as, 
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Note that in classical physics: 
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The mass,  
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is called the “reduced mass”. The momentum Q̂  is the total momentum of the two masses and p̂  
is called the relative motion momentum.  
 
 
a)   Show that the only non-zero commutators among ˆˆ ˆ, , ,R Q r  and p̂  are, 

 ˆˆ ˆ ˆ, ,R Q i r p i          

 b) Assuming for simplicity that 1 2m m m  , show that the in terms of the new coordinates and 

momenta, the Hamiltonian becomes, 
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The Hamiltonian above now appears as an uncoupled Hamiltonian of two different and 
independent simple harmonic oscillators.  
 
c) What is the frequency    of the center-of-mass motion simple harmonic oscillators and what 
is the frequency   of the relative motion simple harmonic oscillator?  
 

d) Define creation and destruction operators, â  and †â , for the center-of-mass motion simple 

harmonic oscillator and also define creation and destruction operators, b̂  and †b̂ , for the relative 
motion simple harmonic oscillator such that the Hamiltonian becomes, 
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e) What are all the eigenstates and eigenvalues of the Hamiltonian? 
 
 
What we did in this problem:  
 
What we really did in this problem was to change the description of the problem of two coupled 
SHOs, which was originally expressed in terms of the individual coordinates of the two masses, 
and expressed the problem in terms of “collective coordinates” that better captured the 
underlying physics. These collective coordinates captured the two different modes of oscillation 
of the two coupled masses: a) the mode in which the two masses move together in-phase such 
that the center spring is never compressed or stretched, and b) the mode in which the two masses 
move out-of-phase and in opposite directions. These two modes of oscillation are depicted 
below. These modes are uncoupled. These uncoupled modes are sometimes also called the 
“normal” modes of the system. Therefore, the Hamiltonian, when expressed in terms of the new 
coordinates also consists of two uncoupled SHOs and each SHO corresponds to one of the two 
normal modes of oscillation.  
 

 
 
Problem 9.2: (Mystery Quantum Gate) 
 
The control-P gate, shown below, has the following property: 

 
The qubit B is acted upon by the quantum P gate if A qubit is 1

A
 and nothing happens to qubit 

B if A qubit is 0
A

. The control-P gate is just another one in the family of two-qubit control 

gates (which also includes, for example, control-X, control-Y, and control-Z gates). The P gate is 
a one-qubit gate that is represented by the following unitary matrix, 

 
0ˆ

0 1

i
U

 
  
 

   

 

Oscillation of the center-of-mass motion SHO Oscillation of the relative motion SHO 

A 

B 

A 

B 
P 



 

 5

a) Now consider the quantum gate shown below that operates on three qubits (it’s a three-qubit 
gate). It is made using the following two-qubit and one-qubit gates: Hadamard gate, control-X 
gate, and control-P gate.  

 
As we said in the lectures, the operation of any quantum gate can be described by its action on 
the unentangled basis states. There are 8 unentangled basis states that describe the three-qubit 
input (as in the table below). Fill the following table below for the output states, and describe 
what the above three-qubit gate does. Do not assume that the output qubits are not entangled 
across P, Q, and R.   
 

Input Output 
A B C P, Q, and R 
|0> |0> |0>  
|0> |0> |1>  
|0> |1> |0>  
|0> |1> |1>  
|1> |0> |0>  
|1> |0> |1>  
|1> |1> |0>  
|1> |1> |1>  
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