ECE 4060: Quantum Physics and Engineering

Fall 2020
Homework 11
Due on Dec. 16, 2020 by 5:00 PM (via email)

Problem 11.1: (Identical electrons in a potential well)

Consider a finite potential well:

The bound quantum energy eigenstates of the well are $\left|\phi_{j}\right\rangle$ where $j=1,2,3$.

$$
\hat{H}\left|\phi_{j}\right\rangle=E_{j}\left|\phi_{j}\right\rangle
$$

Here, \hat{H} is the Hamiltonian,

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x})
$$

Now if we have two particles, A and B, in the well then the Hamiltonian for both can be written as,

$$
\hat{H}=\hat{H}_{A}+\hat{H}_{B}=\left[\frac{\hat{p}_{A}^{2}}{2 m}+V\left(\hat{x}_{A}\right)\right]+\left[\frac{\hat{p}_{B}^{2}}{2 m}+V\left(\hat{x}_{B}\right)\right]
$$

a) Suppose we have two electrons, A and B, and we can choose their spins to be either up or down as desired. Write the quantum state $|\psi\rangle$ corresponding to the lowest energy state that can be formed using these two electrons. Your state must obey the spin-statistics theorem for electrons.
b) Again suppose we have two electrons, A and B, and their quantum state is given as,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{2}\right\rangle_{B} \otimes|z \downarrow\rangle_{B}-\left|\phi_{2}\right\rangle_{A} \otimes|z \downarrow\rangle_{A} \otimes\left|\phi_{1}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}\right]
$$

If a measurement is made to locate the two particles, what is the a-priori probability of finding the two particles at the same location?
c) Again suppose we have two electrons, A and B, and their quantum state is given as,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{2}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}-\left|\phi_{2}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{1}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}\right]
$$

If a measurement is made to locate the two particles, what is the a-priori probability of finding the two particles at the same location?
d) Again suppose we have two electrons, A and B, and their quantum state is given as,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{2}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}-\left|\phi_{2}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{1}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}\right]
$$

If a measurement is made to measure the spin angular momentum of both the particles along the x -axis, what is the a-priori probability of finding both the particles with spin in the positive x direction?
e) Find the mean value of the energy of the two particles, i.e. find $\langle\psi| \hat{H}|\psi\rangle$, if the quantum state is:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle_{A} \otimes|z \uparrow\rangle_{A} \otimes\left|\phi_{2}\right\rangle_{B} \otimes|z \downarrow\rangle_{B}-\left|\phi_{2}\right\rangle_{A} \otimes|z \downarrow\rangle_{A} \otimes\left|\phi_{1}\right\rangle_{B} \otimes|z \uparrow\rangle_{B}\right]
$$

f) Now suppose a magnetic field has been applied from outside in the z-direction and the total Hamiltonian $\hat{H}_{\text {total }}$ in the presence of the magnetic field, is,

$$
\begin{aligned}
\hat{H}_{\text {total }} & =\hat{H}_{A}+\hat{H}_{B}+\frac{e}{m}\left[\hat{\vec{S}}_{A}+\hat{\vec{S}}_{B}\right] \cdot \vec{B} \\
& =\hat{H}_{A}+\hat{H}_{B}+\frac{e}{m}\left[\hat{S}_{z}^{A}+\hat{S}_{z}^{B}\right] B_{z}
\end{aligned}
$$

Find the mean value of the total energy, i.e. find $\langle\psi| \hat{H}_{\text {total }}|\psi\rangle$, if the quantum state is:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\phi_{1}\right\rangle_{A} \otimes|x \uparrow\rangle_{A} \otimes\left|\phi_{2}\right\rangle_{B} \otimes|x \downarrow\rangle_{B}-\left|\phi_{2}\right\rangle_{A} \otimes|x \downarrow\rangle_{A} \otimes\left|\phi_{1}\right\rangle_{B} \otimes|x \uparrow\rangle_{B}\right]
$$

Note: make sure you understand how operators act in their own respective Hilbert space.

