ECE 4060: Quantum Physics and Engineering

Fall 2020
Homework 10
Due on Dec. 09, 2020 by 5:00 PM (via email)

Problem 10.1: (Orbital Angular Momentum via Matrices)

In this course we considered particles of internal angular momentum (or spin) s equal to $\frac{1}{2}$ and their states were given by:

$$
\begin{aligned}
& \hat{S}_{z}\left|s, m= \pm \frac{1}{2}\right\rangle= \pm \frac{\hbar}{2}\left|s, m= \pm \frac{1}{2}\right\rangle \\
& \hat{S}^{2}|s, m\rangle=s(s+1) \hbar^{2}|s, m\rangle=\frac{3}{4} \hbar^{2}|s, m\rangle
\end{aligned}
$$

We mapped the Hilbert space of the two spin states to the Hilbert space of 2-component column vectors such that under this mapping:

$$
\left|s, m=-\frac{1}{2}\right\rangle \rightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left|s, m=+\frac{1}{2}\right\rangle \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

And then the spin operators, under this mapping, became 2×2 Hermitian matrices,

$$
\hat{S}_{x}=\frac{\hbar}{2} \hat{\sigma}_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \hat{S}_{y}=\frac{\hbar}{2} \hat{\sigma}_{y}=\frac{\hbar}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \hat{S}_{z}=\frac{\hbar}{2} \hat{\sigma}_{z}=\frac{\hbar}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Here we will do the same for the orbital angular momentum.
Consider a particle with a fixed orbital angular momentum ℓ equal to 1 . This particle, for example, could be a particle in one of the three p-orbitals of a Hydrogen atom. Its Hilbert space is then effectively limited to three states:

$$
|\ell=1, m=-1\rangle,|\ell=1, m=0\rangle,|\ell=1, m=+1\rangle
$$

And,

$$
\begin{aligned}
& \hat{L}_{z}|1, m\rangle=m \hbar|1, m\rangle \\
& \hat{L}^{2}|1, m\rangle=\ell(\ell+1) \hbar^{2}|1, m\rangle=2 \hbar^{2}|1, m\rangle
\end{aligned}
$$

If one maps these three states to the 3-component column vectors as follows:

$$
|\ell=1, m=-1\rangle \rightarrow\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],|\ell=1, m=0\rangle \rightarrow\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],|\ell=1, m=+1\rangle \rightarrow\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

then we need to find the 3×3 matrices that represent the operators $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$, and \hat{L}^{2} under this mapping. The parts below will help you get there. I will do the simplest one for you; I will find the 3×3 matrix that represents \hat{L}_{z}. First note that the matrix elements of \hat{L}_{z} are,

$$
\left\langle\ell, m^{\prime}\right| \hat{L}_{z}|\ell, m\rangle=\delta_{m, m^{\prime}} m \hbar
$$

This means that \hat{L}_{z} must be a diagonal matrix, and the diagonal elements must be the eigenvalues of \hat{L}_{z}. This gives us the matrix,

$$
\hat{L}_{z} \rightarrow \hbar\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

a) Find the matrix element:

$$
\left\langle\ell, m^{\prime}\right| \hat{L}_{x}|\ell, m\rangle
$$

b) Find the 3×3 matrix that represents the operator \hat{L}_{x}
c) Find the matrix element:

$$
\left\langle\ell, m^{\prime}\right| \hat{L}_{y}|\ell, m\rangle
$$

d) Find the 3×3 matrix that represents the operator \hat{L}_{y}
e) Find the matrix element:

$$
\left\langle\ell, m^{\prime}\right| \hat{L}^{2}|\ell, m\rangle
$$

f) Find the 3×3 matrix that represents the operator \hat{L}^{2}
g) What are the eigenvalues of the matrices that represent \hat{L}_{x} and \hat{L}_{y} ?
g) Verify that your matrices satisfy the commutation relation,

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}
$$

h) Suppose the quantum state of the particle is $|\psi\rangle=|1, m=0\rangle$. If a measurement of the angular momentum along x -axis is made, i.e. \hat{L}_{x} is measured, what are the possible values and what are the a-priori probabilities for measuring each of these values?

Problem 10.2: (Spinors: test your concepts)

Consider the quantum state of an electron described by the two-component spinor (in the eigenbasis of \hat{S}_{z}) as:

$$
\langle\vec{r} \mid \psi\rangle=\psi(\vec{r})=\left[\begin{array}{l}
\chi(\vec{r}) \\
\phi(\vec{r})
\end{array}\right]
$$

a) What is the probability density of finding the electron at the location \vec{r} with spin up ?
b) What is the probability density of finding the electron at the location \vec{r} with spin down?
c) What is the total probability density of finding the electron at the location \vec{r} ?
d) What condition should the functions $\chi(\vec{r})$ and $\phi(\vec{r})$ satisfy such that the wavefunction is properly normalized?
e) If the spin angular momentum along the x-axis is measured, what is the probability density of finding the electron with spin pointing along the +ve x -axis at location \vec{r} ?
f) If the spin angular momentum along the x-axis is measured, what is the probability of finding the electron with spin pointing along the +ve x -axis anywhere in space?

