ECE 4060: Quantum Physics and Engineering

Fall 2020
Homework 1 Due on Sep. 16, 2020 by 5:00 PM (via email)

Problem 1.1: (Fourier Transforms and Quantum Wavefunctions)

The Fourier transforms in 1D are defined as:

$$
\begin{aligned}
& \psi(k)=\int_{-\infty}^{\infty} d x \psi(x) e^{-i k x} \\
& \psi(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \psi(k) e^{i k x}
\end{aligned}
$$

We call $\psi(k)$ the "wavefunction" in Fourier space. $\psi(k)$ and $\psi(x)$ are Fourier transform pairs.
a) Prove the Parseval's identity for Fourier Transform pairs:

$$
\int_{-\infty}^{\infty} \frac{d k}{2 \pi}|\psi(k)|^{2}=\int_{-\infty}^{\infty} d x|\psi(x)|^{2}
$$

Now for the remaining parts, suppose:

$$
\psi(x)=\frac{1}{\left(2 \pi \sigma_{x}^{2}\right)^{1 / 4}} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma_{x}^{2}}} e^{i k_{0} x}
$$

b) Find the average value of the particle position $\langle x\rangle$ with respect to the probability distribution $|\psi(x)|^{2}$.
c) Find the standard deviation $\left\langle\Delta x^{2}\right\rangle=\left\langle(x-\langle x\rangle)^{2}\right\rangle$ with respect to $|\psi(x)|^{2}$. Here, $\Delta x=x-\langle x\rangle$.
d) Find the Fourier Transform $\psi(k)$ of $\psi(x)$.
e) Find the average value of momentum $\langle\hbar k\rangle$ with respect to the probability distribution $|\psi(k)|^{2}$.
f) Find the standard deviation $\left\langle\hbar^{2} \Delta k^{2}\right\rangle=\left\langle(\hbar k-\langle\hbar k\rangle)^{2}\right\rangle$. Here, $\Delta k=k-\langle k\rangle$.
g) If you make the probability distribution $|\psi(x)|^{2}$ really narrow in space (i.e. make the position of the particle more certain) by decreasing σ_{x}, you will reduce $\left\langle\Delta x^{2}\right\rangle$. But what happens to the distribution $|\psi(k)|^{2}$ in Fourier space? Does it become narrow too or does it spread out? Does $\left\langle\hbar^{2} \Delta k^{2}\right\rangle$ increase or decrease?
h) Find the value of the product:

$$
\sqrt{\left\langle\Delta x^{2}\right\rangle} \sqrt{\left\langle\hbar^{2} \Delta k^{2}\right\rangle}=?
$$

Problem 1.2: (Newton's Second Law in Quantum Physics)

Newton's second law forms the basis of classical physics:

$$
\operatorname{ma}(t)=\frac{d p(t)}{d t}=F
$$

If the particle potential energy is $V(x)$ then the force acting on the particle is:

$$
F=-\frac{\partial V(x)}{\partial x}
$$

And,

$$
\frac{d p(t)}{d t}=-\frac{\partial V(x)}{\partial x}
$$

In this problem, we wish to see how what happens to Newton's second law in quantum physics. You will work with the 2D Schrodinger equation:

$$
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(\vec{r}, t)}{\partial x^{2}}+V(x) \psi(x, t)
$$

And its complex conjugate:

$$
-i \hbar \frac{\partial \psi^{*}(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi^{*}(x, t)}{\partial x^{2}}+V(x) \psi^{*}(x, t)
$$

In lecture 5 handout, we showed that the average momentum of a particle is:

$$
\begin{equation*}
\langle p\rangle(t)=\int_{-\infty}^{\infty} d x \psi^{*}(x, t)\left[\frac{\hbar}{i} \frac{\partial}{\partial x}\right] \psi(x, t) \tag{1}
\end{equation*}
$$

In this problem you need to find:

$$
\frac{d\langle p\rangle(t)}{d t}=? ?
$$

The best way to start is to differentiate both sides of equation (1) with respect to time and see where it gets you.

Hint: the end result should look somewhat like Newton's second law.

Problem 1.3: (Linear Algebra Review)

Consider the matrix:

$$
\hat{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

a) Find all the eigenvalues of the above matrix.
b) Find the eigenvectors corresponding to the eigenvalues found in part (a), Make sure your eigenvectors are orthonormal.

Consider another matrix:

$$
\hat{B}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

c) Is the above matrix self-adjoint?
d) Find the matrix commutator $[\hat{A}, \hat{B}]=$?
e) Consider an arbitrary 2×2 Hermitian matrix \hat{C} with eigenvalues λ_{1} and λ_{2}. The corresponding orthonormal eigenvectors are $\left|e_{1}\right\rangle$ and $\left|e_{2}\right\rangle$. Show that the matrix can be written as the following sum of exterior products:

$$
\hat{C}=\lambda_{1}\left|e_{1}\right\rangle\left\langle e_{1}\right|+\lambda_{2}\left|e_{2}\right\rangle\left\langle e_{2}\right|
$$

