Lecture 4

Electrons and Holes in Semiconductors

In this lecture you will learn:
* Generation-recombination in semiconductors in more detail

* The basic set of equations governing the behavior of electrons and holes
in semiconductors

* Shockley Equations

* Quasi-neutrality in conductive materials

Majority and Minority Carriers

In N-doped Semiconductors:

Electrons are the majority carriers
Holes are the minority carriers

In P-doped Semiconductors:

Holes are the majority carriers
Electrons are the minority carriers

Golden Rule of Thumb:

When trying to understand semiconductor devices, always
first see what the minority carriers are doing




Generation and Recombination in Semiconductors
Generation process:
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Generation and Recombination in Thermal Equilibrium

~

¢ From the first lecture, in thermal equilibrium:

The recombination rate =R, =k ng p,
equals the generation rate =G,

ie. G, =R,

* Then in thermal equilibrium:
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Light Absorption in Semiconductors
Generation of electrons and holes by photons in semiconductors:
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Generation and Recombination Out of Thermal Equilibrium

1) Consider a P-doped slab of Silicon:
P-doped ‘ (no << po )

Electron-hole recombination rate in thermal equilibrium=R, =k n, p,
equals the generation rate =G, =k ni2

2) Now turn light on at time t = 0:
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‘ P-doped

« Light breaks the Si-Si covalent bonds and generates excess electron-hole pairs

* The net generation rate now becomes: G =G, +G|_

3) Mathematical model of the above situation:

. *n’(t)and p’(t) are the excess electron and hole densities
n=ny,+n'(t) }

' « It must be that: m
p=po+p (t)

» We also assume that: n'(t ), p'(t ) << Po




Generation and Recombination Out of Thermal Equilibrium

* We can use the equations:

n n=ngy+n'(t)
6a$t)=G"R %“):G"R } P=po+p'(t)

¢ Generation rate:

G=G,+G_
* Recombination rate: N Assumptions: n'. b <<
R=knp p : » P Po
=k (n, +n’ +p'
(n, ')(p° ) 1 ko Tn is the lifetime of the
~k (no +n ) Po > 7 o minority carriers (i.e. electrons)

=k ng po+k n'pg
n' The excess recombination rate is proportional

=Ry +—
o Th ) to the excess MINORITY carrier density

* The equation for excess minority carriers (i.e. electrons) becomes:

, an'(t) G, - n'(t)
ot 7

6n(t)=G_R —>an—(t)=Go+G|_—Ro—n (1)
ot ot Tn

Generation and Recombination Out of Thermal Equilibrium
an (t)=GL _n'(t)
ot 7
* Solution with the boundary condition, n*(t = 0)=0, is:
n'(t) light turned-on att = 0
_t
n'(t)=G. 7, |1-e ™ Gy |

* Excess hole density is, of course :

p(t)=n"(t)

*As t 5> o the excess electron and hole densities reach a steady state value

n(t - »©)=n, +G_ 7,

n'(t - o)=G, 7,
p(t _)°°)= Po +GL 7y

pl(t _)°°)=GL Tn

and




Generation and Recombination Out of Thermal Equilibrium

Now suppose that light had been turned-on for a very very long time and it was
turned-off at time t =0

Attimet=0: n'.=G,_ Th and n=n,+G 7,
p'=G_ 7, P=p,+G. 7,
n(t) / light turned-off att = 0
??
t=0 t

* Since n # Ny, and p # g, the carrier densities are not equal to their thermal
equilibrium values. Thermal equilibrium must get restored since the light has been
turned-off

Question: How does thermal equilibrium gets restored??

Generation and Recombination Out of Thermal Equilibrium
* We can use the equations:

) _o_q »0)__g } n=no+n'l(t)
at at p=po+p'(t)
* Generation rate:
G =G,
* Recombination rate: \ . .
R=knp Assumptions: n’, p' << pg

=k (ng +n")(po +p")
=k (no +n') Po

=Kk ng pp+kn'p,

n' The excess recombination rate is proportional
=Ry + . to the excess MINORITY carrier density

n J

* The equation for excess minority carriers (i.e. electrons) becomes:

on(t) an’'(t) n'(t) on'(t) n'(t)
—+2=G-R — = - - > =G ——~
at o ~ComRom ot Lo,




Generation and Recombination Out of Thermal Equilibrium

on'(t)_ _n'()
ot Th
¢ Solution is:

t

n'(t) = n'(t = 0) e ™ - Excess electron density decays exponentially
to zero from its initial value

n’(t) light turned-off att = 0
’/ The excess carrier densities
TTTTTTTTTTTommosmssossosmosooooeos decay with time and thermal
equilibrium values for carrier
densities are restored
t+0 t

t
* The excess hole density will also decay in the same way: p'(t)=p'(t=0)e ™

*As t > oo the electron and hole densities reach their equilibrium values:

n'{t >»)=0 nt - «)=n,
. and
p'(t > )=0 p(t = ©)=p,

Generation and Recombination in Doped Semiconductors

Whenever you have to find an expression for R use the following recipe:

¢ If it is a p-doped semiconductor:

R=R, + M Tn is the minority carrier lifetime
Tn

« If it is a n-doped semiconductor:

R= RO +7pl(x,t)

r } Tp is the minority carrier lifetime
p

The excess recombination rate (i.e. R - R, ) is always proportional to the excess
MINORITY carrier density




Electron and Hole Current Density Equations

From last lecture............

30()=4n0) 1 EG6)+ D, 410) 0
35(6)= p(x) 4y E(x)—q D, 4 L) @

These are two of Shockley’s equations !

Shockley, Bardeen, and Brattain
from Bell Labs were awarded the
Nobel Prize for inventing the
semiconductor transistor

William John Walter
Shockley Bardeen Brattain

Electron and Hole Current Continuity Equations

* You have already seen the equations:

6n(x,t)_G_R
&t

6p(x’t)=G—R
ot

These equations tell how the electron and hole densities change in time as a
result of recombination and generation processes.

« Carrier densities can also change in time if the current densities change in
space !




Electron and Hole Current Continuity Equations

— > AX ——

Consider the infinitesimal strip between x and x+Ax

Jp(X)

in the infinitesimal strip

‘ —)
pal |\
X X +AX

op(x,t)Ax

Jp(x +Ax)

The difference in hole fluxes at x and x+Ax must result in piling up of holes

Note that q p(x,t) is the hole

e}

J Ax,t)-J Wt
- p (X +Ax,t)= 3, (x )=q6p(x,t)

AX
3,00 " ap(xt)
ox ot ot q

Now add recombination and generation to the above equation:

Jp(x,t)—Jp(X +AX,t)=q charge density

ap(x,t) =_16Jp(x,t)
ox

6p(x,t) =G_R_1a‘]p(x’t)
ot q ox

Electron and Hole Current Continuity Equations - I
One can do the same for electrons as well......

—» AX —

) =
al ™~ .
Jn(x) X x+Ax Jn(x +Ax)
on(,t) __p, 183a(x1)
ot q ox
So now we have two new equations,
op(x,t) _ 5 _g_199p(01) (3)
ot q o
6n(x,t)=G_R+1aJn(x,t) (@)
ot q ox

These are two more of Shockley’s equations !




Gauss’s Law and Electrostatics
The net charge density in a semiconductor is,

p(x1)=a[+Ng (x)=Na(x)+p(x,t)=n(x,t)]

Gauss’s Law in differential form:

dE(x,t) _ p(x,t)

198 Es
E(x,t) _a[+Ng (x)-Na(x)+p(x,t)-n(x,t)]
ox &

This is the fifth and the last of the Shockley’s equations !

(5)

&, = 8.85x107'?Farads/m

14 For Silicon: &5 =11.75,
=8.85x10" " Farads/cm

The Five Shockley Equations

Jalet)=an(ot) mEGo)+ap, NN | )
p(xit)=a () iy EGx,t)-g D, 42 @
ap(x,t) _5_g_193p(x1) (3)

ot q oX
6n(x,t)=G_R+16Jn(x,t) (4)

ot q Ox
dE(x,t) _q[+Ng(x)=Na(x)+p(x,t)-n(x,t)]

- _Aai+Ng . p NG

Using these equations one can understand the behavior of semiconductor
microelectronic devices !!




Quasi-Neutrality
“quasi-neutral”

ivities are
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“Quasi-neutrality” implies that there cannot be large charge densities or electric fields
Lets see why this is true.....and how deviations from quasi-neutrality disappear.......
Consider an infinite and conductive N-doped semiconductor with a net charge

Materials with large conduct
density at time t=0
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Quasi-Neutrality

¢
¢
¢
¢
¢
¢
¢

Jn(x,t)
E)
:
>
:
>
:
>
:
>
:
>
:
>
:
H

I R e

R T S

.@>>>>>>
Ll

- AR

meuxu

._G>>>>>>
gl

c0>>>>>>

B

q n(x’t)aul"l E(Xlt)
The electrical currents will pile electrons on top of the charge density and neutral

and then there is no charge density left in the medium............

The electric field will generate electrical currents

The charge density will generate electric

& _ _
74 =25 ~10""%-10""% seconds
c

This whole process takes a time of the order of the dielectric relaxation time 7y




f Quasi-Neutrality
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Appendix
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From Gauss’ law:

Current equation:

,t)

F

,t)=oE

(g

J
Use the continuity equation for charge:

Charge density in a

conductive medium

disappears on a time

scale of 7

Solution:

p(rt=0) ™

p(r.t)
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