In this lecture you will learn:

• Scattering of electromagnetic waves from objects
• Rayleigh Scattering
• Why the sky is blue
• Radar range equation

Scattering of Electromagnetic Waves from a Plane Interface

Incident, transmitted, and reflected waves are all plane waves

The reflected and transmitted waves can also be called the scattered waves
Scattering of Electromagnetic Waves from Objects

Incident plane wave: $E_i(\vec{r})$

Scattered wave: $E_s(\vec{r})$

Questions:
- How does one find the scattered field?
- How much power from the incident field goes into the scattered field?
- In which direction(s) does the scattered power go?

Scattering of Electromagnetic Waves From Spherical Particles

Assumption:
- Assume that the particle radius is much smaller than the wavelength of the incident wave, i.e.: $ka << 1$
 - When the above condition holds the scattering is called “Rayleigh Scattering”
 - When the above condition does not hold the scattering is called “Mie Scattering”
- When $ka << 1$, the particle sees a uniform E-field that is slowly oscillating in time

Incident plane wave: $E_i(\vec{r})$
Rayleigh Scattering: Basic Mechanism

Incident plane wave: $\hat{E}_i(\hat{r})$

One way to understand scattering is as follows:

i) The incident E-field induces a time-varying dipole moment in the sphere (recall the electrostatics problem of a dielectric sphere in a uniform E-field from homework 3)

ii) The time-varying dipole radiates like a Hertzian dipole, and this radiation is the scattered radiation

Rayleigh Scattering: Induced Dipole

Incident plane wave: $\hat{E}_i(\hat{r})$

Suppose the z-directed E-field phasor for the incident plane wave at the location of the particle is: $\hat{E}(\hat{r} = 0) = \hat{z} E_i$

From homework (3), the z-directed dipole moment p induced in a sphere in the presence of E-field \hat{E} is:

$$ p = 4\pi \varepsilon_0 a^3 \left(\frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_1 + 2\varepsilon_0} \right) \hat{z} E_k $$

In the present case, the dipole moment phasor p induced in the sphere is therefore:

$$ p = 4\pi \varepsilon_0 a^3 \left(\frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_1 + 2\varepsilon_0} \right) \hat{z} E_k $$
Rayleigh Scattering: Scattered Radiation

Hertzian Dipole

Induced Dipole

Dipole moment = \(c = j \omega q \)

\[E_H (r) = \hat{\theta} j \eta_0 k j \omega q \sin(\theta) e^{-jkr} \]

\[P_s = \frac{4\pi}{3\eta_0} k^4 a^6 \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_1 + 2\epsilon_0} \right)^2 |E_i|^2 \]

The far-field scattered radiation is:

\[E_{s-H} (r) = \hat{\theta} j \eta_0 k j \omega p \sin(\theta) e^{-jkr} \]

\[= -\hat{\phi} k^2 a^3 \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_1 + 2\epsilon_0} \right) E_i \sin(\theta) e^{-jkr} \]
Rayleigh Scattering: Scattering Cross-Section

Total scattered power P_s from a dielectric sphere is:

$$P_s = \frac{2\pi}{3\eta_0^2} \left| \mathbf{E}_{\text{sca}}(\mathbf{r}) \right|^2 r^2 \sin(\theta) d\theta d\phi = \frac{4\pi}{3\eta_0} k^4 a^6 \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_1 + 2\epsilon_0} \right)^2 |\mathbf{E}_i|^2$$

The incident power per unit area was just the Poynting vector of the incident wave:

$$\frac{|\mathbf{E}_i(\mathbf{r})|^2}{2\eta_0}$$

The scattering cross-section σ_s of a scatterer is defined as the area of a plane oriented perpendicular to the direction of incident wave that would intercept the same total incident power as the power P_s that the scatterer radiates

$$\sigma_s = \frac{P_s}{|\mathbf{E}_i(\mathbf{r})|^2/2\eta_0}$$

σ_s is also the ratio of the total scattered power to the power per unit area of the incident wave at the location of the scatterer.

For the dielectric sphere:

$$\sigma_s = \frac{P_s}{|E_i(\mathbf{r})|^2/2\eta_0} = \frac{8\pi}{3} k^4 a^6 \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_1 + 2\epsilon_0} \right)^2$$

Rayleigh Scattering: Why is the Sky Blue

The scattering cross-section of a dielectric sphere is:

$$\sigma_s = \frac{8\pi}{3} k^4 a^6 \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_1 + 2\epsilon_0} \right)^2$$

The scattered power is inversely proportional to the fourth power of the wavelength:

$$\sigma_s \propto k^4 \propto \frac{1}{\lambda^4}$$

Shorter wavelengths are scattered more than longer wavelengths in the Rayleigh limit.

Why is the sky blue?

Molecules/atoms in the atmosphere

Rayleigh scatter the sunlight

Sun

Sun is actually white – all wavelengths are present

Sun appears yellow/orange since shorter wavelengths have been scattered out in the direct line-of-sight

Sky appears blue since the shorter wavelengths are scattered more (and violet is absorbed in the upper atmosphere)
Example: Radar Range Equation

Power per unit area at the location of the target:

\[S_{\text{target}} = \frac{P_{\text{in}}}{4\pi r^2} G(\theta, \phi) \]

If the scattering cross-section of the target is \(\sigma_s \) then the total scattered power \(P_s \) is:

\[P_s = \sigma_s S_{\text{target}} = \sigma_s \frac{P_{\text{in}}}{4\pi r^2} G(\theta, \phi) \]

If the target scatters isotropically (equally in all directions) then the power \(P_{\text{out}} \) received by the matched antenna is:

\[P_{\text{out}} = \eta_p \frac{P_s}{4\pi r^2} A(\theta, \phi) \]

\[P_{\text{out}} = \eta_p \frac{P_{\text{in}}}{4\pi r^2} \sigma_s G(\theta, \phi) A(\theta, \phi) \]

Radar range equation

\[\frac{P_{\text{out}}}{P_{\text{in}}} = \eta_p \frac{\sigma_s G^2(\theta, \phi)}{(4\pi r^2)^2} \frac{\lambda^2}{4\pi} = \eta_p \frac{\sigma_s G^2(\theta, \phi)\lambda^2}{(4\pi)^3 r^4} \]