Lecture 32
Circuit Properties of Antennas

In this lecture you will learn:

• Circuit properties of transmitting and receiving antennas
• Thevenin circuit models for receiving antennas
• Antenna theorem

Circuit Properties of Transmitting Antennas - I

How does an antenna look to a driving circuit?

\[\dot{J}(\vec{r}) = \dot{Z} I(\vec{x}) \delta(x) \delta(y) \]

Antenna appears as a load impedance

\[P = P_{\text{inc}} - P_{\text{ref}} \]

\[P = \text{Net time-average power going into the antenna} \]

Poynting theorem:

\[- \nabla \cdot \vec{S}(\vec{r}, t) = \frac{\partial W(\vec{r}, t)}{\partial t} + \dot{J}(\vec{r}, t) \cdot \vec{E}(\vec{r}, t) \]

Time-average form for time-harmonic signals:

\[- \nabla \cdot \langle \vec{S}(\vec{r}, t) \rangle = \langle \dot{J}(\vec{r}, t) \cdot \vec{E}(\vec{r}, t) \rangle \]

Note the distinction between \(P \) and \(P_{\text{inc}} \) and \(P_{\text{rad}} \)
Circuit Properties of Transmitting Antennas - II

Time-average form for time-harmonic signals:
\[
\int_{V_{tr}} S(r,t) \cdot d\mathbf{a} = \int_{V_{tr}} J(r,t) \cdot \mathbf{E}(r,t) \, dv
\]

Net power going in: Net power dissipated
\[
P = P_{rad} = \frac{1}{2} \| \mathbf{P} \|^2 R_{rad}
\]
But:
\[
P_{rad} = \frac{1}{2} \| \mathbf{P} \|^2 R_{rad}
\]
So we get:
\[
P = \frac{1}{2} \| \mathbf{P} \|^2 (R_{diss} + R_{rad})
\]

But from the circuit model:
\[
P = \frac{1}{2} \| \mathbf{P} \|^2 \text{Re}[Z_A]
\]
\[
\text{Re}[Z_A] = R_{rad} + R_{diss}
\]

Circuit Properties of Transmitting Antennas - III

\[
Z_A = R_A + jX_A = (R_{rad} + R_{diss}) + jX_A
\]
The reactive part is due to the net inductance or capacitance of the antenna structure.

Not all the power \(P \) going into an antenna is converted into radiated power \(P_{rad} \) — some is dissipated due to the less-than-infinite conductivity of real metals (i.e. non-zero \(R_{diss} \)).

Definition of Antenna Gain for real antennas:
\[
G(\theta, \phi) = \frac{\langle S(\hat{r}, t) \cdot \hat{r} \rangle}{P / 4\pi r^2}
\]
\[
\text{NOT: } G(\theta, \phi) = \frac{\langle S(\hat{r}, t) \cdot \hat{r} \rangle}{P_{rad} / 4\pi r^2}
\]
The Antenna Efficiency \(\eta_{rad} \) is defined as:
\[
\eta_{rad} = \frac{P_{rad}}{P} = \left(\frac{R_{rad}}{R_{rad} + R_{diss}} \right)
\]
\[
\int_0^{2\pi} \int_0^\pi G(\theta, \phi) \sin\theta \, d\theta \, d\phi = 4\pi \eta_{rad}
\]
Transmitting and Receiving Antenna Systems

Need to determine the following:

i) From the net power P going to the antenna how much is the total radiated power P_{rad}

ii) From the total radiated power how much power is coupled into the receiving antenna

iii) From the total power coupled into the receiving antenna how much ends up as the useful power P_{out} in the receiving circuit

Transmitting Antennas: Gain and Radiated Power

Suppose we only know that the Gain of the antenna is: $G(\theta, \phi)$

$$G(\theta, \phi) = \frac{\langle S(\hat{r}, t) \rangle \cdot \hat{r}}{P / 4\pi r^2}$$

Question: If net power P is delivered to the antenna by the feeding transmission line then how much radiated power per unit area is going in the (θ, ϕ) direction at a distance r from the antenna?

Answer: Radiated power per unit area going in the (θ, ϕ) direction at a distance r from the antenna is:

$$\langle S(\hat{r}, t) \rangle \cdot \hat{r} = \frac{P}{4\pi r^2} G(\theta, \phi)$$

Remember that the unit vector in the radial (θ, ϕ) direction is:

$$\hat{r} = \hat{r}(\theta, \phi) = \hat{x} \sin(\theta) \cos(\phi) + \hat{y} \sin(\theta) \sin(\phi) + \hat{z} \cos(\theta)$$
A Short Dipole: Review of Some Formulas

Antenna Efficiency:

\[
\eta_{rad} = \frac{P_{rad}}{P} = \left(\frac{R_{rad}}{R_{rad} + R_{diss}} \right)
\]

Gain:

\[
G(\theta, \phi) = \frac{\langle \mathbf{S}(r, t) \cdot \mathbf{\hat{r}} \rangle}{P} \frac{P_{rad}}{4\pi r^2} = \left(\frac{\langle \mathbf{S}(r, t) \cdot \mathbf{\hat{r}} \rangle}{P_{rad}} \right) \left(\frac{P_{rad}}{P} \right)
\]

\[
= \left(\frac{3}{2} \sin^2(\theta) \right) \eta_{rad}
\]

\[
= \frac{3}{2} \eta_{rad} \sin^2(\theta)
\]

Radiation Resistance:

\[
R_{rad} = \frac{\eta_{rad}}{8\pi} (k d_{eff})^2
\]

\[
d_{eff} = \frac{d}{2}
\]

Receiving Antennas: Thevenin Equivalent Circuit

Basic Idea:

Make a Thevenin equivalent circuit for the receiving antenna

- The Thevenin impedance \(Z_{th} \) is the impedance looking into the antenna and is therefore the same as the antenna impedance \(Z_A \)
- \(V_{th} \) is due to the radiation power received by the antenna and is something that we need to find

\[
Z_{th} = Z_A = R_{rad} + R_{diss} + jX_A
\]
Receiving Antennas: Thevenin Equivalent Circuit

To find V_{th} assume the antenna inputs are open circuited and then determine how much voltage will be produced at the input terminals by the incoming radiation.

Short dipole receiving antenna

For the short dipole under consideration, suppose the incoming radiation was from the θ-direction and had E-field of strength E at the location of the antenna, then:

$$V_{th} = E \frac{d}{2} \sin(\theta)$$

$$= E d_{eff} \sin(\theta)$$

Receiving Antennas: Maximum Power Delivered

Maximum power is delivered to the output circuit if its (transformed) impedance is matched to the antenna impedance Z_A.

So the max. value of P_{out} is:

$$P_{out} = \frac{|V_{th}|^2}{8 \text{Re}(Z_A)}$$

$$= \frac{V_{th}^2}{8 R_{rad}} \left(\frac{R_{rad}}{\text{Re}(Z_A)} \right)$$

$$= \frac{V_{th}^2}{8 R_{rad}} \left(\frac{R_{rad}}{R_{rad} + R_{diss}} \right)$$

$$= \frac{V_{th}^2}{8 R_{rad}} \eta_{rad}$$

Remember that for a short dipole:

$$R_{rad} = \frac{\eta_o}{6\pi} (k d_{eff})^2$$

But:

$$\langle S(t) \rangle (-\hat{r}) = \frac{E^2}{2\eta_o}$$

$$\Rightarrow V_{th} = \sqrt{2\eta_o} \langle S(t) \rangle (-\hat{r}) d_{eff} \sin(\theta)$$
Receiving Antennas: Effective Antenna Area

Effective Antenna Area:

The effective antenna area \(A(\theta, \phi) \) is defined as the ratio of the power delivered by the antenna to a matched load to the incident radiation power per unit area from the \((\theta, \phi)\)-direction.

For the short dipole:

\[
A(\theta, \phi) = \frac{\lambda^2}{4\pi} \left(\frac{3}{2} \right) \eta_{\text{rad}} \sin^2(\theta)
\]

Assuming a matched case:

\[
P_{\text{out}} = \frac{\lambda^2}{4\pi} \left(\frac{3}{2} \right) \eta_{\text{rad}} \sin^2(\theta) \mathcal{S}(t) \cdot (-\hat{r})
\]

\[
= A(\theta, \phi) \mathcal{S}(t) \cdot (-\hat{r})
\]

Antenna Theorem

Antenna Theorem (see proof at the end):

The antenna theorem states that for any antenna the effective antenna area and antenna gain are related by:

\[
A(\theta, \phi) = \frac{\lambda^2}{4\pi} G(\theta, \phi)
\]

In the previous slides we proved it for the short dipole – but it holds for all types of antennas.

\[
\langle \mathcal{S}(\hat{r}, t) \rangle_{\hat{r}} = \frac{P}{4\pi r^2} G(\theta, \phi)
\]

\[
P_{\text{out}} = A(\theta, \phi) \langle \mathcal{S}(t) \rangle_{(-\hat{r})}
\]
The polarization of incident radiation is said to be not matched to the "polarization of the antenna" if it is not the same as that of the radiation emitted by the antenna if it were to radiate in the direction of the incident radiation

More generally one can write:

\[P_{out} = \eta_p A(\theta, \phi) \langle S(t) \rangle \langle \hat{S}(t) \rangle \langle -\hat{r} \rangle \]

Where: \(\eta_p = \cos^2(\alpha) \)

And: \(\alpha \) is the angle between the polarization of the incident radiation and the polarization of the radiation emitted by the antenna if it were to radiate in the direction of the incident radiation

Transmitting and Receiving Antenna Systems

Power per unit area at the location of the second antenna:

\[\langle S(\hat{r}, t) \rangle \cdot \hat{r}_1 = \frac{P}{4\pi L^2} G_1(\theta_1, \phi_1) \]

\[\hat{r}_1 = \hat{x}_1 \sin(\theta_1) \cos(\phi_1) + \hat{y}_1 \sin(\theta_1) \sin(\phi_1) + \hat{z}_1 \cos(\theta_1) \]

Power delivered to a matched load by the second antenna:

\[P_{out} = \eta_p A_2(\theta_2, \phi_2) \langle S(t) \rangle \langle -\hat{r}_2 \rangle \]

\[\hat{r}_2 = \hat{x}_2 \sin(\theta_2) \cos(\phi_2) + \hat{y}_2 \sin(\theta_2) \sin(\phi_2) + \hat{z}_2 \cos(\theta_2) \]

\[\Rightarrow P_{out} = \eta_p A_2(\theta_2, \phi_2) G_2(\theta_1, \phi_1) \frac{P}{4\pi L^2} \]
Circuit Model of Transmitting and Receiving Antenna System

Transmitting and receiving antenna
\[Z_{11} = (R_{\text{rad}} + R_{\text{diss}})_{11} + jX_{11} \]
\[Z_{22} = (R_{\text{rad}} + R_{\text{diss}})_{22} + jX_{22} \]

\[\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \]

Reciprocity condition: \(Z_{12} = Z_{21} \)

Circuit Model: Short Dipole Example

Transmitting short dipole antenna

Field produced by the current of the transmitting antenna at the receiving antenna
\[E_1(r_2) = \hat{\phi}_1 \times \frac{j \eta_0 k l_1 d_{\text{eff}1}}{4 \pi L} \sin(\theta_1) \sin(\theta_2) e^{-j k L} \]

Open-circuit voltage at the receiving antenna:
\[V_2 = Z_{21} l_1 \]
\[= E_1(r_2) \cdot \hat{\phi}_2 \cdot d_{\text{eff}2} \]
\[= \eta_p \frac{j \eta_0 k l_1 d_{\text{eff}1} d_{\text{eff}2}}{4 \pi L} \sin(\theta_1) \sin(\theta_2) e^{-j k L} \]
\[\Rightarrow Z_{21} = \eta_p \frac{j \eta_0 k d_{\text{eff}1} d_{\text{eff}2}}{4 \pi L} \sin(\theta_1) \sin(\theta_2) e^{-j k L} \]
Antenna Theorem: More General Proof - I

Short dipole antenna (1)

Some arbitrary antenna (2)

\[
\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}
\]

When (1) transmits and (2) receives:

\[
P_{\text{out}2} \left/ P_1 \right. = \frac{\eta_p |Z_{12}|^2}{4 \Re \left[Z_{11} \right] \Re \left[Z_{22} \right]} = \frac{G_1 A_2}{4 \pi L^2}
\]

When (2) transmits and (1) receives:

\[
P_{\text{out}1} \left/ P_2 \right. = \frac{\eta_p |Z_{12}|^2}{4 \Re \left[Z_{11} \right] \Re \left[Z_{22} \right]} = \frac{G_2 A_1}{4 \pi L^2}
\]

Use the fact that \(Z_{11} = Z_{12}\) to get:

\[
\begin{align*}
P_{\text{out}2} \left/ P_1 \right. &= \frac{|Z_{12}|^2}{4 \Re \left[Z_{11} \right] \Re \left[Z_{22} \right]} = \frac{G_1 A_2}{4 \pi L^2} \\
\end{align*}
\]

Reciprocity !!

Therefore:

\[
\frac{A_1}{G_1} = \frac{A_2}{G_2} = \frac{\lambda^2}{4 \pi}
\]

QED