An atypical antidepressant drug regulates synaptic plasticity

Laurent Groc

- Research Director at French National Center for Research (CNRS)
- Study of molecular mechanisms of neural connection formation
- Principal Investigator at Bordeaux Segalain University
- Neuroscience PhD from Wayne State University, Michigan

Daniel Choquet

- Research Director at French National Center for Research CNRS
- Director of the Institute of Interdisciplinary Neuroscience – Bordeaux Segalain University
- Director of Bordeaux Imaging Center
- Study of receptor trafficking via high resolution imaging techniques
- PhD in neuroscience from Pasteur Institute, France

Others

- Honyu Zhang – Postdoc
- Anne-Sophie Hafner – Postdoc
- Francois Coussen – Researcher (now married to D. Choquet)

Tianeptine is an unregulated legal substance with an unknown site of action

- Not believed to directly modulate monoamine transmission
- Action may involve glutamate receptor transmission

Molecular Psychiatry

- Nature Publishing Group
 - 1/135 Psychiatry
 - 7/251 Neuroscience
 - 5/290 Biochemistry & Molecular Biology

Laurent Groc • Research Director at French National Center for Research (CNRS) • Study of molecular mechanisms of neural connection formation • Principal Investigator at Bordeaux Segalain University • Neuroscience PhD from Wayne State University, Michigan

Daniel Choquet • Research Director at French National Center for Research CNRS • Director of the Institute of Interdisciplinary Neuroscience – Bordeaux Segalain University • Director of Bordeaux Imaging Center • Study of receptor trafficking via high resolution imaging techniques • PhD in neuroscience from Pasteur Institute, France

Others • Honyu Zhang – Postdoc • Anne-Sophie Hafner – Postdoc • Francois Coussen – Researcher (now married to D. Choquet)

Tianeptine is an unregulated legal substance with an unknown site of action • Not believed to directly modulate monoamine transmission • Action may involve glutamate receptor transmission
Ionotropic Glutamate Receptors (iGluRs)

- Ligand gated (glutamate) ion channels responsible for excitatory synaptic transmission
- AMPA Receptor (AMPAR)
 - Four subunits
 - GluA1-3 subunits
 - Excitatory
- NMDA Receptor (NMDAR)
 - Voltage dependent
 - Mg²⁺ block
- Kainate Receptor

Mechanism of long term potentiation (LTP) synaptic plasticity at a glutamate synapse

1. Depolarization of postsynaptic membrane
2. Relief of NMDAR Mg²⁺ block
3. Ca²⁺ influx through NMDAR
4. Activation of Ca²⁺-Dependent Kinase
5. Phosphorylation of AMPAR facilitating surface delivery
6. More excitatory AMPAR, more excitable synapse

Compromised synaptic plasticity may underlie mood disorder

- Alterations in plasticity seen in stress-induced animal models of depression
- Synaptic plasticity mechanisms intimately related to dendritic branching and brain region volume
- Regions affected include hippocampus, pre-frontal cortex, amygdala
- All important in cognitive and affective function
- Tianeptine may exert its antidepressant effect by reversing compromised plasticity

Tianeptine reverses stress induced decreases in LTP

- LTP dependent on high frequency activation
- 4 pulse of high freq. stim results in subsequent higher fEPSP
 - Indicative of LTP
- Graph plot of fEPSP after LTP-inducing stimulation, as % of control
- Stress decreases magnitude of LTP
 - Effect reversed by tianeptine

Tianeptine decrease stimulation threshold for LTP

- 3 pulse stimulation produces change in fEPSP in control (black trace)
- Tianeptine administration results in significantly greater potentiation with 3 pulse stimulation (red trace)

Tianeptine reduces stress induced decrease in field EPSP

- Field EPSP
 - Extracellular recording of a population of neurons
 - A measurement of basal synaptic transmission strength
Tianeptine molecular mechanism involves AMPA receptor lateral diffusion

Tianeptine reduces stress induced decrease of surface GluA1 AMPA receptor subunit

- Fluorescent imaging of GluR1 :: superEcliptic pHluorin (SEP) intensity
 - pH sensitive fluorescent protein
 - Strong emission indicative of extracellular environment (~neutral pH)
 - Low emission in acidified intracellular vesicles

Tianeptine increases GluA1 at the synapse

- Quantification of GluA1 at synapse by fluorescent intensity
- Postsynaptic protein homer1c is tagged with red fluorescent protein
- Co-localization with tagged homer1c defines “synaptic”

Tianeptine decreases GluA1 AMPAR surface diffusion

- GluA1 :: SEP used to visualize
- Light pulse is used to bleach SEP
- Unbleached tagged GluA1 diffuse laterally and fluorescence is recovered
- In (a) & (b) qualitative and quantitative fluorescence recovery is faster with tianeptine
 - Indicates greater lateral mobility

GluA2 AMPA receptor subunit quantum dot (QD) tracking

- Antibody specific for N-terminal domain of GluA2
- QD secondary antibody
- Visualization using mercury lamp and regular CCD video camera
- High signal/noise ratio vs. fluorescent protein

GluA1 AMPA receptor subunit is important in LTP

- Regulatory phosphorylation sites
 - Serine-831: receptor trafficking
 - Serine-845: modulate how often receptor can open
- AMPA receptors containing only GluA1 are trafficked to synapse in early LTP
 - Open “wider”
 - Permeability to Ca$^{2+}$ may play later role in LTP

Tianeptine reduces stress induced decrease of surface GluA1 AMPA receptor subunit

- Fluorescent imaging of GluR1 :: superEcliptic pHluorin (SEP) intensity
- pH sensitive fluorescent protein
- Strong emission indicative of extracellular environment (~neutral pH)
- Low emission in acidified intracellular vesicles

Tianeptine increases GluA1 at the synapse

- Quantification of GluA1 at synapse by fluorescent intensity
- Postsynaptic protein homer1c is tagged with red fluorescent protein
- Co-localization with tagged homer1c defines “synaptic”

Tianeptine decreases GluA1 AMPAR surface diffusion

- GluA1 :: SEP used to visualize
- Light pulse is used to bleach SEP
- Unbleached tagged GluA1 diffuse laterally and fluorescence is recovered
- In (a) & (b) qualitative and quantitative fluorescence recovery is faster with tianeptine
 - Indicates greater lateral mobility

GluA2 AMPA receptor subunit quantum dot (QD) tracking

- Antibody specific for N-terminal domain of GluA2
- QD secondary antibody
- Visualization using mercury lamp and regular CCD video camera
- High signal/noise ratio vs. fluorescent protein
Tianeptine decreases GluA2-AMPAR surface diffusion

- Yellow traces show path of a single GluA2 containing AMPA receptor
- Quantification of diffusion revealed significant differences

Tianeptine reduces glucocorticoid incubation induced AMPAR movement

- Glucocorticoid (GC) is a stress hormone
- Activation of glucocorticoid receptors in brain implicated in effects of stress
- Figure shows trajectory of QD tagged GluA2
 - GC induced mobility increase is reduced by tianeptine

The molecular mechanism of tianeptine action is dependent on a CaMKII – Stargazin – PSD95 interaction

- Dependent on CaMKII phosphorylation of Stargazin protein that associates with AMPARs
- Phosphorylated Stargazin must bind PSD95 (a synaptic structural protein)
- Inhibition of either of these steps by drug or mutation prevented the effects of tianeptine

Further evidence for affect on Stargazin – PSD95 interaction

- Energy emitted by GFP on PSD95 is absorbed by red fluorophore on Stargazin if two are close together
 - GFP will become dimmer
- Measurement of GFP “lifetime” quantifies stargazin-PSD95 binding
 - GFP lifetime is significantly shorter in tianeptine administration

Summary

- Tianeptine reduces stress induced LTP changes
 - Perhaps through reduction of LTP-inducing stimulation threshold
- Tianeptine reduces lateral diffusion of AMPA receptors out of the synapse
 - No effect on endocytosis or exocytosis seen
- A CaMKII – Stargazin – PSD95 interaction is necessary for the effects of tianeptine