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Torsion refers to the twisting of a shaft loaded by torque, 
or twisting couples.  

In this example, the 
magnitude of the 
moment, or torque, T, 
due to the couple is

T Pd=

Virtual Labs, Real Data
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Alternate representations of torque

Use the right hand rule to understand the above. 
Torque is a moment with its vector direction along 
the axis of the shaft.  The torque applied in these 
figures is in the same direction as in slide 1.
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Deformation due to torsion

• is the radial distance to any point.
• is the angle of twist in radians 
• is the shear strain.
• The horizontal line ab moves to ab’ 

• The shear strain is 

• From geometry 

• So the strain 

• If shaft has uniform section, length L,

• Hence twist and strain are related as 

γ

Note: Relations here are based solely 
on geometry and so they are valid for 
circular shaft of any material, linear or 
non-linear, elastic or non-elastic.
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•We use Hooke’s law for a linear elastic material

•From slide 3,  the shear strain is

•Thus the stress is 

•The torque, T, is found by integrating the 
stress*distance over the cross section, S, of the shaft

Stresses in torsion

γτ G=

L
ρφγ =

S

T d Aτ ρ= ∫

L
G ρφτ =
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Relation of torque and twist

• Using stress from previous relations, we get

where J is the polar moment of inertia

• Using the above we find the relation between the twist and the 
torque
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• And the we can write the shear stress as
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Polar Moment of Inertia

Definition: The Polar
Moment of Inertia is defined as the integral

If ‘O’ is the centroid of the area, 
then       is the distance from the point  ‘O’

to the element of area dA. 
ρ

*Solid circular cross section:

*Hollow Circular Cross Section:

where, 
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Torsional stiffness

φkT =

Think of the shaft as a torsional spring with

Since φ
L
GJT =

k is the stiffness of the torsional spring. 

Torsional stiffness : 
L
GJk =
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Solid Shaft Hollow Shaft

Note: The shear stress is maximum for the outermost element
where the radii is maximum.  

J
Tρτ =

In a circular shaft  shear stress varies linearly
from center:  

Stress distribution in a shaft.
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Behavior of brittle and ductile materials under torsion 

The state of pure shear is equivalent to a state of pure compressive
and tensile stresses  for an element rotated through 450.

If material is weak in tension, it will fail along a plane 450 to the longitudinal axis
of the shaft.  If weak in shear it will fail along a plane 900 to the axis of the shaft

10

Failure occurs in tension along a helix inclined at an angle of 
450 to the longitudinal axis of the femur.

Failure of a brittle material under torsional loading
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Failure of a ductile material under torsional load

Failure occurs in shear along a plane perpendicular to 
the longitudinal axis.
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Elastic-plastic torsion

• Hooke’s law does not 
apply when shear stress 
exceeds shear yield 
strength, τy .

• Torque at start of yield 
is given by

where ro is outer radius 
of shaft.

• Outer surface yields first.
• As torque increases,  

region of yielding 
expands to cover entire 
cross section.

o
yyield r
JT τ=
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Elastic-plastic torsion example

τ

γ

τy

Schematic shear stress-strain curve

G

1

T

φ

Tyield

Schematic torque-twist curve
•As deformation progresses, region of 
plastic deformation, τ>τy, spreads 
towards center of shaft

Region of plastic 
deformation is shaded
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Summary of topics covered

•Torsion defined 

•Strain due to torsion

•Relationship between strain, twist and torque

•Polar moment of inertia 

•Torsional stiffness

•Stress distribution in a shaft

•Failure of ductile and brittle materials

•Elastic-plastic torsion
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Summary of equations

J
Tr

J
T O== maxτρτ

φkT =

L
GJk =

2
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Slide 1 

In this presentation we will define what torque and torsion are and we will derive the theory of 

torsion of circular shafts. Implications of torsion theory to the failure of materials is also 

discussed.  Torsion refers to the twisting of a shaft loaded by torque, or twisting couples.   For 

example, in the generation of electricity shafts carry torque from the turbine to the generator.  An 

example of torsional loading is shown here.  In this example we load the shaft by two equal and 

opposite forces acting on a bar perpendicular to the shaft.  The moment generated by these forces 

is sometimes called a couple.  The magnitude of the moment due to this couple is given by P 

times d, where, P is the applied force and d is the distance between the lines of action of the 

forces.This twisting couple is also called the ‘Torque’ or ‘Twisting Moment’.  

 

Slide 2 

Two alternate ways of depicting torque are shown here. In the left-hand figure the torque is 

shown as a loop with an arrow depicting its direction.  In the right-hand figure the torque is 

shown as a vector moment.  The direction of the moment is parallel to the shaft.  The sign of the 

moment, can be understood using the right hand rule.  The rule is that if you rotate your right 

hand in the direction of the applied torque, then your thumb points in the direction of the vector 

indicated by two arrowheads in the right-hand figure.   

 

Slide 3 

We will now review the derivation and interpretation of the theory of torsion of circular shafts.  

We start by looking at a small section of length dx of a circular shaft under torsion.  During 

twisting, one end of the shaft will rotate about the longitudinal axis with respect to the other end . 

The magnitude of this rotation is measured in terms of the angle in radians by which one end 

rotates relative to the other. This is called the ‘Angle of Twist’. It can be seen that the line ab, 

which was initially horizontal, rotates through an angle gamma, and moves to the line ab’. Here 

dφ  is the angle of twist. 

 

The shear strain, gamma is the angle between ab and ab'.  It is found by the distance bb' divided 

by the distance ab.  Using geometry, the arc length dxd γφρ = . Thus we can write the strain as 



d
d x
φγ ρ= . Let's assume that we are dealing with a shaft of uniform cross section and 

materials, thus the total twist, φ  over a length L is simply dL
dx
φφ = .  Combining the third and 

fourth equations we get the final equation, giving the relation of shear strain to twist (φ ), radial 

distance ( ρ ), and shaft length (L).  Note that all the relations here, are based solely on the 

geometry of the circular shaft. Hence they are valid for any type of material.  This is not so in 

what follows, the calculation of stresses based on linear elastic material behavior.   

 

Slide 4 

For a linear elastic material, using Hooke’s law, we can write the shear stress as Gτ γ= , where, 

G is the Shear Modulus.  The shear strain on a small area of material situated at a distance ρ  

from the center, was found in slide 3 to be: 
L
ρφγ = .  Thus, using Hooke's law, as G

L
ρφτ = .  

The torque, T, is calculated by integrating over the cross section the product of shear stress,τ , 

and the distance, ρ , from the center of the shaft .   

 

Slide 5 

Substituting the stress from previous expressions, we find that torque is the integral 

of 2

S

G dA
L
φ ρ∫  over the cross section of the shaft.  Pulling out the terms that do not vary over 

the cross section we get thatT G J
L
φ

= , where J is the polar moment of inertia and is defined 

as 2

S

J dAρ= ∫ . We will discuss polar moment of inertia, J, on the next slide.  Rearranging the 

terms, we can write the angle of twist,φ , as TL
GJ

φ = .We can also find the stress from G
L
ρφτ = , 

and then substituting for φ  to get T
J
ρτ = . 

 

 

 



Slide 6 

The moment of inertia about an axis perpendicular to the plane of an area is called the Polar 

Moment of Inertia.  If dA is the area of a small element at a distance ρ from the center of the 

cross section, then the Polar Moment of Inertia, J, is defined as the integral over the cross section 

of the product of distance squared and the small area dA .For a solid circular shaft, the polar 

moment of inertia is given by 2

S

J dAρ= ∫ . Similarly we can write the expression for a hollow 

shaft.   

Slide 7 

To understand what torsional stiffness is, we can think of the shaft as a torsional spring with 

torque equal to a spring constant, k, times rotationφ .  From previous relations, we already know 

that GJT
L
φ

= .  Comparing these two relations, we find that the torsional stiffness, k, is 

GJk
L

= .The stiffness increases with increasing shear modulus, increases with the fourth power 

of the shaft diameter since J is proportional to r to the fourth power, and decreases as the shaft 

gets longer. 

Slide 8 

Now let’s use the theory to examine in further detail the shear stress distribution in a shaft under 

torsional loading.  We already know that the shear stresses are directly proportional to the 

distance from the center. It means that, for any circular shaft, the shear stress would be maximum 

for an element which is farthest from the center. The figure on the left shows the shear stress 

distribution in a solid shaft. The shear stress is zero at the center while it is the maximum at the 

surface.  The figure on the right shows the distribution of shear stress for a hollow shaft. The 

shear stress is minimum for on the inside surface and maximum on the outer surface.  As the 

thickness of the wall of the shaft decreases relative to the shaft diameter, the difference between 

the stress on the inside and outside of the shaft decreases and you obtain a more uniform stress 

field.   

 

 

 



Slide 9 

We might ask the question "Do all the materials fail in a similar manner when subjected to 

torsional Loading?" As you will see the answer is no. To understand this you will remember that 

whenever a structure is subjected to torsion, the elements are in a state of pure shear.  By 

considering the transformation of stresses, this state of pure shear, is equivalent to a state of pure 

compression and pure tension on planes rotated forty five degrees to the axis of the shaft.  One 

implication of this stress state is that if the material is weak in tension, it will fail along a plane 

forty five degrees to the longitudinal axis of the shaft.  However, if the material is ductile, 

meaning that it can deform in shear before breaking, it may fail along a plane ninety to the axis 

of the shaft.   
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In this picture we see a turkey tibiotarsus bone fractured under torsional loading. It can be seen 

that failure occurs along a helix inclined at an angle of 045  to the longitudinal axis. This type of 

failure is typical of brittle materials since they tend to fail along planes perpendicular to the 

direction of maximum tension.   

Slide 11 

This picture shows a ductile metal shaft fracture in torsion.  It has failed by shearing off along a 

plane perpendicular to the axis of the shaft.  This type of failure is typical to ductile materials 

since they can deform in shear more readily than they can fracture in tension. 

 

Slide 12 

We now look at the behavior of a shaft made of a ductile material under torsional loading. 

Hooke’s law applies only when the shear stress is below the yield stress, yτ . The value of the 

torque at the start of yield is given by
0

y
yield

J
T

r
τ

= , where yτ  is the shear yield strength of the 

material and 0r  is the outer radius of the shaft. Note also that the outer surface yields first and 

then the plastic deformation progresses to the center of the shaft as the torque increases.  
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 Shown on the left is a typical stress versus strain curve for a ductile material. The slope of the 

line in the linear elastic region is the shear modulus for the material. The schematic on the right 

is a plot of torque versus rotation. This curve is similar to the stress-strain curve. The plot shows 

the evolution of plastic deformation for the shaft as the torque increases. Just at the end of the 

linear portion of the plot, the outer portion of the shaft begins to yield. As torque increases, the 

plastic zone expands to the inner core. 

Slide 14 

We have reviewed a number of topics in the theory of torsion of circular shafts.  Torsion refers to 

loading of a shaft by a moment parallel to the shaft.  This moment is called a torque.  The strain 

in torsion is found by geometric considerations.  Knowing strain we found stress using Hooke's 

law.  Integrating the stress over the cross sectional area of the shaft, we derived the relation 

between shear strain, twist and torque.  This relation involves the polar moment of inertia.  

Thinking of the shaft as a torsional spring we found the spring constant in terms of the geometry 

and shear modulus of the shaft.  Stresses in solid and hollow shafts are discussed, and brittle and 

ductile failure explored.   
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The basic equations of torsion of circular shafts are given here for reference.  You may want to 

refer to them as you work on your analyses and reports.  Of course, you can also find these 

results in your mechanics of materials textbook.   

 

 

 

 


