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Appendix I - Summary Statistics of Data: Household Char-

acteristics, Income and Normalized Expenditures

Variable Minimum 1st Quartile Median Mean 3rd Quartile maximum

number of female 0 1 1 1073 1 2

number of retired 0 0 0 0051 0 1

number of earners 0 1 2 1692 2 2

Age of HHhead 19 31 49 46 58 90

Fridge 0 1 1 0987 1 1

Washing Machine 0 1 1 0882 1 1

Centr. Heating 0 1 1 0804 1 1

TV 0 1 1 0874 1 1

Video 0 0 0 0407 1 1

PC 0 0 0 0792 0 1

number of cars 0 1 1 1351 2 10

number of rooms 1 4 5 5455 6 26

HHincome 6653 37550 52210 61820 73920 3981000

Food 0 5565 7346 7867 9602 52519

Housing 0 4052 7859 9715 12910 375486

Energy 0 1271 1812 2121 2509 34103
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Appendix II - Proofs

Proposition 1 Recall the Fréchet-Hoeffding bounds: For any two random variables 1 and 2

and events (in the relevant algebras) 1 and 2, one has the tight bounds

max{P(1 ∈ 1) + P(2 ∈ 2)− 1 0} ≤ P(1 ∈ 12 ∈ 2) ≤ min{P(1 ∈ 1)P(2 ∈ 2)}

To see validity of the lower bound, note that

P(WARP violated)

= P( ≤ ( − )( − )  ≥ ( − )( − )  6= )

= P( ≤ ( − )( − )  ≥ ( − )( − ))−
P( ≤ ( − )( − )  ≥ ( − )( − )  = )

= P( ≤ ( − )( − )  ≥ ( − )( − ))− P( =  = ( − )( − ))

≥ max {P( ≤ ( − )( − ))− P(  ( − )( − )) 0}−
min {P( = ( − )( − ))P( = ( − )( − ))} 

where the first equality spells out the event that WARP is violated, the next two steps use

basic probability calculus, and the last step uses the lower Fréchet-Hoeffding bound on P( ≤
( − )( − ))  ≥ ( − )( − )) as well as the upper Fréchet-Hoeffding bound on

P( =  = ( − )( − )). The expression in the lemma is generated by taking the

maximum between the last expression and zero, observing that this renders redundant the max-

operator in the preceding display.

The bound is tight because a joint distribution of ( ) that achieves it can be constructed as

follows: First, assign probabilitymin {P( = ( − )( − ))P( = ( − )( − ))}
to the event ( =  = (− )(− )). Second, remove this probability mass from the mar-

ginal distributions of ( ) and rescale them so they integrate to 1. Third, the joint distribution

of ( | =  = (−)(−) does not hold) is characterized by those rescaled marginal

distributions and the Fréchet-Hoeffding lower bound (perfectly positive dependence) copula.

To see validity of the upper bound, note that

P(WARP violated) ≤ min {P( ≤ ( − )( − ))P( ≥ ( − )( − ))}
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by the upper Fréchet-Hoeffding bounds and furthermore that

P(WARP violated)

= P(( ≤ ( − )( − )   ( − )( − ))

or (  ( − )( − )  ≥ ( − )( − )))

≤ 1− P( ≥ ( − )( − )  ≤ ( − )( − ))

≤ 1−min {P( ≥ ( − )( − ))P( ≤ ( − )( − ))}
= max {P(  ( − )( − ))P(  ( − )( − ))} 

where all equalities and the first inequality use basic probability calculus and the second inequality

utilizes a lower Fréchet-Hoeffding bound on P( ≥ (− )(− )  ≤ (− )(− )).

To see that the bound is tight, note that it is achieved by the Fréchet-Hoeffding upper bound

(perfectly negative dependence) copula. Intermediate values can be attained by mixing the two

distributions that achieve the bounds.

Lemma 2.2 Assume positive quadrant dependence. Recall that B is a lower contour set and

B an upper one, hence

P(Q ∈ BQ ∈ B) ≥ P(Q ∈ B)P(Q ∈ B)

hence

P(Q ∈ BQ ∈ B) = P(Q ∈ B)− P(Q ∈ BQ ∈ B)

≤ P(Q ∈ B)− P(Q ∈ B)P(Q ∈ B)

= (1− P(Q ∈ B))P(Q ∈ B) = P(Q ∈ B)P(Q ∈ B)

The refined lower bound for (ii) is established similarly. The old lower and upper bounds are tight

because the distributions that generate them are consistent with positive respectively negative

quadrant dependence. The bounds at P(Q ∈ B)P(Q ∈ B) are tight because independence

of Q and Q cannot be excluded.

Example 3 The first and third claim are easy to see, we will establish the one regarding asso-

ciation. To see the lower bound, let  ≡ {q : (1 2 1) · q ≥ 51}, then  contains a1, a2, and b2
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but not a2 or b1. Now write

P(Q1 ∈ Q2 ∈ ) ≥ P(Q1 ∈ )P (Q2 ∈ )

⇐⇒ P(Q2 ∈  |Q1 ∈ ) ≥ P (Q2 ∈ )

⇐⇒ P(Q2 ∈  |Q1 ∈ ) ≤ P (Q2 ∈ )

⇐⇒ P(Q2 ∈  |Q1 ∈ ) ≥ P (Q2 ∈ )

⇐⇒ P(Q2 = b1|Q1 = a2) ≥ P (Q2 = b1) = 12

implying the claim. The bound is tight because association allows for independence.

Lemma 3.1 Throughout this proof, we denote by Y = (1 ), Z = (1 ) and   denote

a fixed position. Following standard arguments for local polynomials (e.g., Fan and Gijbels (1996)),

we obtain for the bias

E [̂ − |YZ] = 2−
2

2
0 () + (

2)

The variance requires a bit more care. We decompose the estimator into bias and variance part,

i.e.: ̂( ) − ( ) =
P

( + ), where  are weights, see Fan and Gijbels (1999).

Next, consider

  [̂( )|YZ] = E
£
(̂ − )

2 |YZ¤
= E

"X


X


|YZ
#

+2E

"X


X


|YZ
#

+E

"X


X


|YZ
#

= 1 + 2 + 3

Observe that 2 = 0 by iterated expectations, and 3 = (1). Finally,

E

"X


X


|YZ
#
=
X


 2
E

¡
2 | =   = 

¢
= −

X


 2


Then, by standard arguments,
P


2
 = −1−2+(()

−1
), and the statement follows

by a CLT for triangular arrays, see again Fan and Gijbels (1996).
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To see that b → 1 (and hence b → 1), observe that

b − 


=

√



√


(b − ) =
1


√
−

√
 (b − )| {z }

≡



where the second step follows by substituting for  = 
−. By the lemma’s main claim,  is

stochastically bounded, thus 1− →∞ implies (b − ) 
→ 0 and hence the claim.

Lemma 3.2 We establish the uniform result by showing a pointwise one but in moving para-

meters ( ), implying the uniform result because the pointwise finding can be applied to a

least favorable sequence. Also, we will make a finite number of case distinction depending on

whether parameters are “large” or “small” in senses that will be defined. Every sequence can be

partitioned into finitely many subsequences s.t. each subsequence conforms to one case below.

We first establish a number of lemmas showing that the different versions of 1−(Θ) are

valid under different sets of conditions.

Lemma A.1. Assume that min { 1− }  → 0. Then lim→∞ P(Θ0 ⊆ 11−(Θ)) = 1.

Proof.

Θ0 = [max{ −  0}min{ 1− }] ⊆ [0min{ 1− }] ⊆ [0 ] ⊂ [0 11−(Θ)]

Lemma A.2. Assume that (1− ) 2 → 0 and 2 → 0. Then lim→∞ P(Θ0 ⊆
21−(Θ)) = 1.

Proof. Noting that  −  = 1− (1− )−  ≥ 1−  for  large enough, write

Θ0 = [max{ −  0}min{ 1− }] ⊆ [1−  1] ⊂ 21−(Θ)

Lemma A.3. Assume that  (̂ − )
→ N (0 1), that 

³b − 

´
→ 0, and thatb → 1. Then lim→∞ P(Θ0 ⊆ 31−(Θ)) = 1− .
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Proof. Write

lim
→∞

P(Θ0 ⊆ 31−(Θ))

= lim
→∞

P
³b − b − 1−b−1 ≤  −   ≤ b + 1−b−1 ´

= lim
→∞

P
³
b ³b −  −

³b − 

´´
≤ 1− b (b − ) ≥ −1−

´
= lim

→∞
P (−1− ≤ b (b − ) ≤ 1−)

= 1− 

where the last step uses the definition of 1− and this lemma’s assumptions.

LemmaA.4. Assume that 

³b − 

´
→ N (0 1), that  (b − )

→ 0, and that b →
1. Then lim→∞ P(Θ0 ⊆ 41−(Θ)) = 1− .

Proof. This mimics lemma A.4.

Lemma A.5. Assume that
h
 (̂ − )  

³b − 

´i
→ N (0 2), that b → 1,

and that b → 1. Then lim→∞ P(Θ0 ⊆ 1−(Θ)) = 1− .

Proof. This case requires two sub-distinctions amounting to four distinct sub-cases, accord-

ing to which of (??-??) must be presumed to (almost) bind. Let  be a sequence s.t.  → 0,

 →∞, but  → 0. First, assume that − ≥ −, meaning that (??) must be taken
into account. Then 1−(Θ) will be constructed according to (??-??) with probability approach-

ing 1, thus it suffices to show validity of this construction. Assume first that | +  − 1| ≤ ,

thus
¯̄̄b + b − 1¯̄̄ ≤  with probability approaching 1. We can then write

lim
→∞

P(Θ0 ⊆ 1−(Θ)) = lim
→∞

P

⎛⎝ max
nb − b − −1  0

o
≤ max{ −  0}

min{ 1− } ≤ min
nb 1− bo+ −1 

⎞⎠ 

We bound the r.h. probability from below by observing some logical implications. First,

b − b − −1  ≤  −  =⇒ max
nb − b − −1  0

o
≤ max{ −  0}

To see this, note that if − ≥ 0, then the two inequalities are equivalent except if b−b−−1  ≤
0, in which case they are both fulfilled. If  −   0, then the l.h. inequality implies the r.h.

one because whenever the l.h. inequality holds, both sides of the r.h. inequality equal 0.
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Second,

min
nb 1− bo−min{ 1− }

= min
nb −min{ 1− } 1− b −min{ 1− }

o
≥ min

nb −   − bo 
Together, these implications yield

lim
→∞

P(Θ0 ⊆ 1−(Θ))

≥ lim
→∞

P
³b − b − −1  ≤  − min

nb −   − bo ≥ −−1 
´

= lim
→∞

P
³b − b − −1  ≤  −  b −  ≥ −−1  b −  ≤ −1 

´
= lim

→∞
P
³


³b −  −
³b − 

´´
≤   (b − ) ≥ − 

³b − 

´
≤ 

´
= lim

→∞
P
¡
1 − 2 ≤  1 ≥ − 2 ≤ 

¢
= lim

→∞
P
¡b1 − b2 ≤  b1 ≥ − b2 ≤ 

¢
≥ 1− 

where the last steps use this lemma’s assumptions and condition (??).

Now, let  −   −. In this case, 1−(Θ) will be constructed according to (??-??)
with some probability and according to (??-??) with the remaining probability (which goes to 1

as  −  becomes very small). In any case, construction (??-??) is by construction larger than

(??-??), thus it suffices to show the claim under the premise that construction (??-??) applies

with probability 1. The argument is similar to the above.

Proof of main result. Every sequence ( ) can be decomposed into subsequences s.t.

one of the above lemmas applies to each subsequence. The pre-tests are designed to use the ap-

propriate procedure depending on features of ( ). If ( ) is far away from the benchmark

sequences specified in the pre-tests, this match will be perfect and one of the above lemmas will

apply directly. If 1−(Θ) might oscillate between different procedures in the limit, some ad-

ditional argument is needed. To keep track of the 49 potential case distinctions, categorize the

possible subsequences as in the following table.
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1−ψ=    ψ=   

o(c) O(c) (other) O(b) o(b) O(c) o(c)

π=    o(c) 2 2 2 2 2 2 2

O(c) 2 4 4 4 4 10 8

(other) 2 4 1 1 1 11 6

1− π=    O(b) 2 4 1 5 5 12 6

o(b) 2 4 1 5 3 3 3

O(c) 2 13 14 15 3 3 3

o(c) 2 9 7 7 3 3 3

In this table, “other” refers to all sequences s.t.   () and 1−  () (respectively

the same for ). In cases labelled 1, the baseline construction is valid and will be used with prob-

ability approaching 1. The same is true for 11−(Θ) in the cases labelled 2 and for 
2
1−(Θ) in

the cases labelled 3. In cases labelled 4, 1−(Θ) may oscillate between constructions 11−(Θ)

and 51−(Θ). Note, though, that in these cases one will have 
5
1−(Θ) ⊆ 11−(Θ) by construc-

tion and furthermore that lemma A.5 applies, thus 1−(Θ) is valid (if potentially conservative).

In case 5, an analogous argument applies but with 21−(Θ) and 51−(Θ). In case 6, one can

directly apply lemma A.3, and in case 7, the same holds for lemma A.4. In case 8, 1−(Θ) may

oscillate between 11−(Θ) and 
3
1−(Θ), but 

3
1−(Θ) ⊆ 11−(Θ) by construction and lemma

A.3 applies. A similar argument applies to case 9. In all of cases 10-12, 31−(Θ) and 51−(Θ)

are asymptotically equivalent. Validity in case 11, where 1−(Θ) ∈
©
31−(Θ) 

5
1−(Θ)

ª
with

probability approaching 1, follows from lemma A.5. In cases 10 and 12, where the probability of

1−(Θ) = 11−(Θ) (case 10) or 1−(Θ) = 21−(Θ) (case 12) fails to vanish, additional

argument along previous lines is needed. The analog argument holds for cases 13-15.

Consider now the claim that lim→∞ inf∈Θ
P( ∈ 1−()) = 1− . The proof plan for

this is similar to the above, and we only elaborate steps that differ. In particular, lemmas A.1

and A.2 immediately imply the analogous result here. It remains to demonstrate the following.

Lemma B.3. Assume that  (̂ − )
→ N (0 1), that 

³b − 

´
→ 0, and thatb → 1. Then lim→∞ inf∈Θ

P( ∈ 31−()) = 1− .

Proof. Again, with probability approaching 1 we have Θ0 = [ −  ], ∆ = ,
bΘ =hb − b bi, and b∆ = min

nb 1− b b 1− bo = b, thus b∆ is superefficient relative to the rate of

convergence of ̂. Parameterizing the true parameter value as  =  −  for  ∈ [0 1],1 one
1Strictly speaking we should allow  to be a moving parameter as well, but obviously any sequence {} will

have finitely many accumulation points in [0 1] and the argument can be conducted separately along the according
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can then write

lim
→∞

P( ∈ 31−())

= lim
→∞

P
³b − b − 1−b−1 ≤  −  ≤ b + 1−b−1´

= lim
→∞

P
³
b−1 ³

 − b´− 1− ≤ b−1 ( − b) ≤ 1− + b−1 

´
= lim

→∞
P
¡


−1
 (− 1) − 1− ≤ 

−1
 ( − b) ≤ 1− + 

−1
 

¢
= lim

→∞

¡
Φ
¡
1− + 

−1
 

¢−Φ
¡


−1
 (− 1) − 1−

¢¢


Direct evaluation of derivatives shows that this limit is concave in  and is minimized when

 ∈ {0 1}, in which case it equals 1− .

LemmaB.4. Assume that 

³b − 

´
→ N (0 1), that  (b − )

→ 0, and that b →
1. Then lim→∞ inf∈Θ

P( ∈ 41−()) = 1− .

Proof. This mimics lemma B.3.

Lemma B.5. Let the assumptions of lemma A.5 hold. Then P( ∈ 51−()) = 1− .

Proof. In view of the fact that if ∆ → 0, then 

³b∆−∆
´
→ 0, this follows by minimal

adaptation of arguments in Stoye (2009, proposition 1).

Proof of main result. This is now analogous to the proof of the main result in the preceding

proof.

subsequences.
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