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This appendix uses finite sample results from Stoye (2009) to compute exact minimax regret values

for different decision situations and sample designs. The goal is to improve on several quantitative

analyses in Manski (2004).

Performance of Empirical Success Rules

The empirical success rule, δES ≡ I {y1 ≥ y0}, is of special interest for at least three reasons. First,
it is probably the most obvious decision rule to employ. Second, it is the one used by Manski (2004).

Third, we know from Hirano and Porter (2008) that it is asymptotically minimax regret efficient. Yet

at the same time, it was seen to significantly differ from the minimax regret rule for small samples.

How much do these differences matter in terms of regret? By searching over a restricted state space,

one can numerically bound from below sups∈S R(δ
ES , s). In table 1, the resulting bound, labelled R, is

contrasted with R∗1 (from corollary 1 in Stoye 2009) for different sample sizes.1 δES incurs significant

excess regret when samples are very small, incurring at least double the true minimax regret for N = 2.

But the table also suggests convergence: For N = 40, the demonstrable inefficiency of δES drops to

21% of true minimax regret, and this percentage becomes very small for large samples.

A similar exercise can be performed for the case of testing an innovation. Tables 2 through 4

compare the empirical success rule, here δES = I(y1 ≥ μ0), to eδ∗3, using the same three values of μ0
as Manski (2004).2 The relative underperformance, in terms of regret, of δES is again quite large for

1Although I continue to define δES as in Manski (2004), results are not driven by suboptimal tie-breaking. The source

of suboptimality of δES is its discontinuity at y1 = y0. Conversely, what sets δ
∗
1 apart is the smoothing (by means of

randomization) around y1 = y0.
2 In these tables, the lower bound R sometimes displays erratic behavior, e.g. it increases in N . This may occasionally

reflect movement in the true regret (minimax regret must weakly decrease in N , but the maximal regret incurred by a

specific decision rule need not do so), but probably also attests to the difficulty of finding sups∈S R(δ
ES , s).
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N 2 4 6 8 10 12 14 16 18 20

R∗1 .1250 .0870 .0706 .0609 .0543 .0495 .0458 .0428 .0403 .0382

R .25 .1481 .1066 .0883 .0765 .0681 .0617 .0568 .0528 .0495

N 22 24 30 40 50 100 200 400 1000 2000

R∗1 .0364 .0348 .0311 .0269 .0241 .0170 .0120 .0085 .0054 .0038

R .0467 .0442 .0387 .0326 .0286 .0193 .0132 .0091 .0056 .0039

Table 1: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(two unknown treatments).

N 1 2 3 4 5 6 7 8 9 10

R∗3 .0408 .0358 .0315 .0279 .0248 .0221 .0197 .0176 .0158 .0143

R .2256 .1270 .0859 .0634 .0492 .0396 .0326 .0273 .0232 .0199

N 11 12 15 20 25 50 100 200 500 1000

R∗3 .0130 .0120 .0096 .0086 .0080 .0054 .0037 .0026 .0017 .0012

R .0193 .0195 .0199 .0203 .0136 .0084 .0059 .0037 .0021 .0014

Table 2: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, mu0=0.05).

N 1 2 3 4 5 6 7 8 9 10

R∗3 .0900 .0516 .0389 .0380 .0345 .0299 .0268 .0265 .0252 .0232

R .1406 .0625 .0705 .0790 .0517 .0431 .0455 .0473 .0353 .0336

N 11 12 15 20 25 50 100 200 500 1000

R∗3 .0217 .0215 .0187 .0166 .0149 .0104 .0074 .0052 .0033 .0023

R .0346 .0354 .0285 .0248 .0193 .0132 .0090 .0060 .0036 .0025

Table 3: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, mu0=0.25).

N 1 2 3 4 5 6 7 8 9 10

R∗3 .0625 .0625 .0435 .0435 .0353 .0353 .0304 .0304 .0272 .0272

R .1250 .1099 .0531 .0697 .0462 .0533 .0401 .0441 .0356 .0382

N 11 12 15 20 25 50 100 200 500 1000

R∗3 .0247 .0247 .0214 .0191 .0167 .0120 .0085 .0060 .0038 .0027

R .0321 .0340 .0273 .0247 .0206 .0143 .0096 .0066 .0040 .0028

Table 4: Selected values of R* and of a lower bound for regret incurred by the empirical success rule

(one unknown treatment, mu0=0.5).
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small and moderate sample sizes.

Comparing Sample Stratifications

Manski (2004) also compares the minimax regret value of different ways to stratify samples by covariate.

I remove two layers of approximation from this analysis. First, computations are based on exact

regret and not an upper bound on it; second, they presume that conditional on sample designs, exact

minimax regret rules are chosen, whereas Manski restricts attention to δES . Table 5 displays the

resulting optimal stratifications, as well as the minimax regret value of the optimal stratification, for

the case of a binary covariate X ∈ {m, f}. (The tools employed here are corollary 1 and example 1 in
Stoye (2009); note that the example is exactly the problem analyzed here.) The cells corresponding

to given values of N and Pr(X = m) give the optimal stratification (Nm, Nf ) as well as the minimax

regret value R∗ ≡ Pr(X = m)R∗1(Nm) + Pr(X = f)R∗1(Nf ) of this stratification. The numbers can be

compared to Manski’s (2004, table II) “quasi-optimal stratifications” as well as his upper bounds on

the resulting regret, all of which are reproduced in parentheses.3

The entries for R∗ reveal that previous bounds on minimax regret had considerable slack. (Its two

sources — suboptimal performance of δES and slack of large deviations bounds — are not separated

here.) Accordingly, optimal stratifications frequently differ from the quasi-optimal ones, although not

by very much. Furthermore, this paper’s closed-form results allow for very fast computation of the

solutions, so that the table can be extended to much larger sample sizes.

Explanation of Tables

I conclude by giving some remarks on the computation of R. The problem is to bound the maximal

regret incurred by δES ,

sup
P (Y0,Y1)∈∆[0,1]2

R(δES , P (Y0, Y1)) = sup
P (Y0,Y1)∈∆[0,1]2

½
(μ1 − μ0)

∙
Pr (y0 > y1) +

1

2
Pr(y0 = y1)

¸¾
,

where I assume that μ1 > μ0; this is w.l.o.g. by arguments in the proof of proposition 1. I here specify

the tie-breaking probability as 1/2 to clarify that results are not driven by suboptimal tie-breaking.

A full treatment of this problem is intricate, but its value can be bounded from below by searching

over a restriction of ∆[0, 1]2. I consider the following cases:

• Case 1: Both treatments induce Bernoulli distributions, i.e. the search space is restricted to
∆ {0, 1}2; similar to previous arguments, the search parameters are then just (μ0, μ1).

3Like Manski (2004), I restrict attention to deterministic stratifications. The truly optimal stratifications may be

randomized. They could be computed from the extension of corollary 1 to random N .
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Pr(X =m) = .05 Pr(X =m) = .25

N Nm Nf R∗ Nm Nf R∗

4 0(0) 4(2) .108(.338) 2(2) 2(1) .125(.423)

8 2(0) 6(4) .073(.250) 2(2) 6(3) .084(.293)

12 2(2) 10(5) .058(.203) 4(4) 8(4) .067(.234)

16 2(2) 14(7) .050(.173) 6(6) 10(5) .058(.205)

20 2(4) 18(8) .045(.154) 6(6) 14(7) .052(.182)

24 4(4) 20(10) .041(.143) 8(8) 16(8) .047(.162)

28 4(4) 24(12) .037(.133) 10(10) 18(9) .044(.153)

32 4(4) 28(14) .035(.124) 10(12) 22(10) .041(.144)

36 4(4) 32(16) .033(.115) 12(12) 24(12) .038(.137)

40 6(4) 34(18) .031(.108) 14(14) 26(13) .037(.129)

44 6(4) 38(20) .030(.101) 14(16) 30(14) .035(.122)

48 6(4) 42(22) .029(.094) 16(16) 32(16) .033(.116)

52 6(6) 46(23) .027(.088) 16(16) 36(18) .032(.110)

60 8 52 .025 20 40 .030

80 10 70 .022 26 54 .026

100 12 88 .020 32 68 .023

200 24 176 .014 64 136 .016

500 62 438 .009 162 338 .010

1000 124 876 .006 326 674 .007

Table 5: Optimal (deterministic) sample stratifications; values from Manski (2004) in parentheses.
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• Case 2: Treatment 0 induces a degenerate distribution concentrated at some point μ0, whereas
treatment 1 has a Bernoulli distribution. This case has two subcases according as μ1 > [<]μ0.

Both cases incur open set problems. For case 1, if y0 = y1, the decision rule will assign the correct

treatment half the time. Regret can, therefore, be increased by letting the better of the two treatments

be supported (with unchanged probabilities) on {0, 1−ε} rather than {0, 1}. By letting ε→ 0, one can

approximate the effect of a decision rule whose tie-breaking goes in the wrong direction. The problem

with case 2 is similar. To generate well-behaved problems, I therefore rig the tie-breaking rule against

the decision maker in all cases.

With these remarks in mind, alternative lower bounds on the regret can be computed as follows.

Define B(n,N, μ) ≡
¡
N
n

¢
μn(1 − μ)N−n and F (n,N, μ) ≡

Pn
i=0B(i,N, μ), then one can consider the

following cases:

• Case 1: maxμ0,μ1∈[0,1]
n
(μ1 − μ0)

PN
n=0B(n,N, μ0) · F (n,N, μ1)

o
.

• Case 2, first subcase: maxμ0,μ1∈[0,1] {(μ1 − μ0)F (μ0N,N,μ1)}.

• Case 2, second subcase: maxμ0,μ1∈[0,1] {(μ0 − μ1) (1− F (μ0N − 1, N, μ1)}.

Table 1 is generated by numerical evaluation of all of these. The two subcases of case 2 turn out

to yield identical regrets. Cases 1 and 2 coincide for N = 1. Otherwise, case 2 binds, i.e. yields the

highest regret, for N = 2, and case 1 binds thereafter.

Tables 2-4 only use case 1, but with the variation that the support of Y1 is generalized to {0, x}.
The idea here is the following: If one evaluates case 1 only, then R sometimes sharply increases in N ;

for example, this occurs if μ0 = 0.25 and N moves from 3 to 4. In the specific example, this happens

because for N = 4, treatment 1 will be rejected even if one success is recorded. For any given Bernoulli

distributed treatment, the probability of it being adopted therefore jumps downward, which means

that for any such treatment with parameter exceeding μ0 — i.e. one that should, in fact, be adopted

—, regret increases.

This observation spawns an intuition: Perhaps for N = 4 and μ0 = 0.25, one might want to consider

distributions Y1 supported on {0, 3/4} because in this case, one success in 4 trials will still lead to
rejection. Indeed, this is how the according cell of table 5 was found. More generally, I search over

some salient guesses of the upper support point and also execute an algorithm in which this variable

is handed down to the maximizer.
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