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Abstract

This paper extends Imbens and Manski’s (2004) analysis of confidence intervals for interval

identified parameters. The extension is motivated by the discovery that for their final result,

Imbens and Manski implicitly assume locally superefficient estimation of a nuisance parameter.

I re-analyze the problem both with assumptions that merely weaken this superefficiency con-

dition and with assumptions that remove it altogether. Imbens and Manski’s confidence region

is valid under weaker assumptions than theirs, yet superefficiency is required. I also provide a

confidence interval that is valid under superefficiency but can be adapted to the general case.

A methodological contribution is to observe that the difficulty of inference comes from a pre-

estimation problem regarding a nuisance parameter, clarifying the connection to other work on

partial identification.
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1 Introduction

Analysis of partial identification, that is, of models where only bounds on parameters are identified,

has become an active field of econometrics.1 Within this field, attention recently turned to general

treatments of estimation and inference. An important contribution in this direction is due to Imbens

and Manski (2004, IM henceforth), who point out that one might be interested in confidence regions for

partially identified parameters themselves rather than “identified sets.” The intuitively most obvious,

and previously used, confidence regions are of the latter type, meaning that they are conservative for

the parameters. IM propose a number of confidence regions for real-valued parameters that can be

asymptotically concluded to lie in an interval.

This paper refines and extends IM’s main technical result, a confidence interval that exhibits

uniform coverage of partially identified parameters if the length of the identified interval is a nuisance

parameter. IM rely on a high-level assumption that turns out to imply locally superefficient estimation

of this nuisance parameter and that will fail in many applications. I take this discovery as point of

departure for a new analysis of the problem, providing different confidence intervals that are valid both

with and without superefficiency.

A brief summary and overview of results goes as follows. In section 2, I set up the inference problem,

briefly summarize IM’s contribution, and explain the aforementioned issue. Section 3 contains the re-

analysis. It reconstructs IM’s results from weaker and, as will be shown, more generic assumptions,

but also proposes a different confidence region that is easily adapted to the case of no superefficiency.

Section 4 concludes, and the appendix contains all proofs.

2 Background

Following Woutersen (2006), I consider a generalization of IM’s setup that removes some nuisance

parameters. The object of interest is the real-valued parameter θ0(P ) of a probability distribution

P (X); P must lie in a set P that is characterized by ex ante constraints (maintained assumptions).

The random variable X is not completely observable, so that θ0 may not be identified. Assume,

however, that the observable aspects of P (X) identify bounds θl(P ) and θu(P ) s.t. θ0 ∈ [θl, θu] a.s.
The interval Θ0 ≡ [θl, θu] will also be called identified set. Let ∆(P ) ≡ θu − θl denote its length.

Assume that estimators bθl, bθu, and b∆ exist and are connected by the identity b∆ ≡ bθu − bθl.
Confidence regions for identified sets of this type are conventionally formed as

CIα =

∙bθl − cαbσl√
N

,bθu + cαbσu√
N

¸
,

1 See Manski (2003) for a survey and many references.
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where bσl [bσu] is a standard error for bθl [bθu], and where cα is chosen s.t.
Φ(cα)− Φ(−cα) = 1− α. (1)

For example, cα = Φ−1(0.975) ≈ 1.96 for a 95%-confidence interval. Under regularity conditions, a
simple Bonferroni argument establishes that Pr(Θ0 ⊆ CIα) → 1 − α. IM’s contribution is motivated

by the observations that (i) one might be interested in coverage of θ0 rather than Θ0, (ii) whenever

∆ > 0, then Pr(θ0 ∈ CIα) → 1 − α/2. In words, a 90% C.I. for Θ0 is a 95% C.I. for θ0. The reason

is that asymptotically, ∆ is large relative to sampling error, so that noncoverage risk is effectively

one-sided at {θl, θu} and vanishes otherwise. One would, therefore, be tempted to construct a level α
C.I. for θ as CI2α.2

Unfortunately, this intuition works pointwise but not uniformly over interesting specifications of P.
Specifically, Pr(θ0 ∈ CIα) = 1− α if ∆ = 0 and also Pr(θ0 ∈ CIα)→ 1− α along any local parameter

sequence where ∆N ≤ O(N−1/2), i.e. whenever ∆ fails to diverge relative to sampling error. While

uniformity failures are standard in econometrics, this one is unpalatable because it concerns a very

salient region of the parameter space; were it neglected, one would be led to construct confidence

intervals that shrink as a parameter moves from point identification to slight underidentification.3

IM therefore propose the following confidence region:

CI1α ≡
∙bθl − c1αbσl√

N
,bθu + c1αbσu√

N

¸
,

where c1α solves

Φ

Ã
c1α +

√
N b∆

max {bσl, bσu}
!
− Φ

¡
−c1α

¢
= 1− α. (2)

Comparison of (2) with (1) reveals that (2) takes into account the estimated length of the identified

set. For a 95% confidence set, c1α will be Φ
−1(0.975) ≈ 1.96 if b∆ = 0, that is if point identification

must be presumed, and will approach Φ−1(0.95) ≈ 1.64 as b∆ grows large relative to sampling error.

IM show uniform validity of CI1α under the following assumption.

2To avoid uninstructive complications, I presume α ≤ .5 throughout.
3 In fact, CIα is not uniformly valid (at level 1−α) for the identified set either. Application of the union/intersection

method yields an interval that is pointwise but not uniformly equivalent to CIα, with problems again occurring if ∆N

is local to zero. This is not the focus of this paper however.

All of these problem could be avoided by bounding ∆ away from 0. But such a restriction will frequently be inap-

propriate; for example, one cannot a priori bound from below the degree of item nonresponse in a survey or of attrition

in a panel. Also, even when ∆ is known a priori, e.g. with interval data, the problem arguably disappears only in a

superficial sense. Were it ignored, one would construct confidence intervals that work uniformly given any model but

whose performance deteriorates across models as point identification is approached.

3



Assumption 1 (i) There exist estimators bθl and bθu that satisfy:
√
N

⎡⎣ bθl − θlbθu − θu

⎤⎦ d→ N

⎛⎝⎡⎣ 0

0

⎤⎦ ,
⎡⎣ σ2l ρσlσu

ρσlσu σ2u

⎤⎦⎞⎠
uniformly in P ∈ P, and there are estimators

³bσ2l , bσ2l ,bρ´ that converge to their population values
uniformly in P ∈ P.
(ii) For all P ∈ P, σ2 ≤ σ2l , σ

2
u ≤ σ2 for some positive and finite σ2 and σ2, and θu−θl ≤ ∆ <∞.

(iii) For all > 0, there are v > 0, K, and N0 s.t. N ≥ N0 implies Pr
³√

N
¯̄̄ b∆−∆¯̄̄ > K∆v

´
<

uniformly in P ∈ P.

While it is clear that uniformity can obtain only under restrictions on P, it is important to note that
∆ is not bounded from below, thus the specific uniformity problem that arises near point identification

is not assumed away. Having said that, conditions (i) and (ii) are fairly standard, but (iii) deserves

some explanation. It implies that b∆ approaches its population counterpart ∆ in a specific way. If

∆ = 0, then b∆ = 0 with probability approaching 1 in finite samples, i.e. if point identification obtains,
then this will be learned exactly, and the limiting distribution of b∆ must be degenerate. What’s more,
degenerate limiting distributions occur along any local parameter sequence that converges to zero, as

is formally stated in the following lemma.4

Lemma 1 Assumption 1(iii) implies that
√
N
¯̄̄ b∆−∆N

¯̄̄
p→ 0 for all sequences of distributions {PN} ⊆

P s.t. ∆N ≡ ∆(PN )→ 0.

In words, assumption 1(iii) requires b∆ to be superefficient at zero. It seems that this was not

previously recognized, and it is certainly a nonstandard restriction. To be sure, there are relevant

cases where superefficiency obtains naturally. One important example is that sample probabilities

are superefficient estimators of population probabilities near zero; this is why Imbens and Manski

(2004) are able to verify their assumptions for the mean with missing data. A new and less obvious

example will be presented in this paper. Also, superefficiency has a somewhat dubious reputation due

to pitfalls encountered when it is induced artificially. Such constructions incur large local risk that is,

furthermore, easily overlooked in inappropriate asymptotic frameworks; see Leeb and Pötscher (2005)

for some cautionary tales. These problems need not arise when superefficiency is assumed, and they

do not affect CI1α. Having said that, imposing superefficieny by assumption raises questions about

generality. It fails when bθl and bθu come from individual moment conditions (as in the ATM example

of Pakes et al. 2007) or when worst-case bounds are tightened by means of testable assumptions (i.e.

4This paper makes heavy use of local parameters, and to minimize confusion, I reserve the subscript (·)N for deter-

ministic functions of N , including local parameters; hence the use of cα where IM used CN . Estimators are denoted by

(·) throughout.
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the refined bounds may overlap). More generally, one might wonder whether CI1α applies in cases that

interestingly generalize the mean with missing data.

I now turn to answering these questions. Regarding the range of applications of CI1α, the superef-

ficiency condition can be weakened and is then implied whenever bθu ≥ bθl by construction. Regarding
generality, CI1α is not valid without superefficiency, but one can construct an alternative interval that

is easily adapted to settings with and without superefficiency.

3 Re-analysis of the Inference Problem

It is instructive to begin by assuming that ∆N is known.

Assumption 2 (i) There exists an estimator bθl that satisfies:
√
N
hbθl − θl

i
d→ N

¡
0, σ2l

¢
uniformly in P ∈ P, and there is an estimator bσ2l that converges to σ2l uniformly in P ∈ P.
(ii) ∆N ≥ 0 is known.
(iii) For all P ∈ P, σ2 ≤ σ2l , σ

2
u ≤ σ2 for some positive and finite σ2 and σ2.

Applications of this scenario include inference about the mean from interval data, where the length

of intervals (e.g., income brackets) does not vary on the support of θ, as well as worst-case bounds on

the average treatment effect when potential outcomes are supported on [0, 1]. Define

fCIα = ∙bθl − ecαbσl√
N

,bθu + ecαbσl√
N

¸
,

where

Φ

Ãecα + √N∆Nbσl
!
− Φ (−ecα) = 1− α. (3)

Lemma 2 establishes that this confidence interval is uniformly valid.

Lemma 2 Let assumption 2 hold. Then

lim
N→∞

inf
θ∈Θ

inf
P :θ0(P )=θ

Pr
³
θ0 ∈ fCIα´ = 1− α.

This result generalizes IM’s lemma 3 from means with missing data to the present setting It has

the same proof idea: The normal approximation to Pr
³
θ0 ∈ fCIα´ is concave in θ0 and equals (1−α)

if θ0 ∈ {θl, θu}. The lemma’s main purpose is as a backdrop for the case with unknown ∆N , whenfCIα is not feasible; pre-estimation of ∆N will turn out to be the root cause of most problems. I turn

to this case now.

Thus, impose assumption 1(i)-(ii), drop assumption 1(iii), but consider the following.
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Assumption 3 There exists a sequence {aN} s.t. aN → 0, aN
√
N →∞, and

√
N
¯̄̄ b∆−∆N

¯̄̄
p→ 0 for

all sequences of distributions {PN} ⊆ P with ∆N ≤ aN .

Assumption 3 is again a superefficiency condition, although more transparent than assumption

1(iii). More importantly, it is weaker: By lemma 1, assumption 1(iii) implies that the above holds

with the quantifier “for all sequences {aN}...”. One consequence of this weakening is the availability
of a simple sufficient condition for superefficiency.5

Lemma 3 Let assumption 1(i)-(ii) hold and assume that Pr(bθu ≥ bθl) = 1 for all P. Then assumption
3 is implied.

Thus, assumption 3 obtains whenever (bθl,bθu) are jointly asymptotically normal and are almost
surely ordered, in particular when they are ordered by construction. This immediately verifies super-

efficiency for a good number of applications including worst-case bounds on smooth functions of pop-

ulation moments or (under regularity conditions) quantiles, where in either case, partial identification

could be due either to missing data or to interval observations with (a priori) unknown length of inter-

vals. Assumption 1(iii) is not similarly implied and accordingly harder to verify (although ultimately

fulfilled in the examples just given). Nonetheless, assumption 3 suffices for CI1α to be valid.

Proposition 1 Let assumptions 1(i)-(ii) and 3 hold. Then

lim
N→∞

inf
θ∈Θ

inf
P :θ0(P )=θ

Pr
¡
θ0 ∈ CI1α

¢
= 1− α.

Proposition 1 strengthens IM’s main result; furthermore, a clear understanding of its reliance on

superefficiency informs a concise and intuitive proof. Think of CI1α as feasible version of fCIα, with
c1α being an estimator of ecα. Validity of CI1α would easily follow from consistency of c1α, but such

consistency seems to fail:
³b∆−∆´ is usually of order O(N−1/2), so that ³√N b∆−√N∆´ does not

vanish. This is where superefficiency comes into play. Think in terms of local parameters ∆N , and

distinguish between sequences where ∆N vanishes fast enough for assumption 3 to apply and sequences

where this fails. In the former case,
³√

N b∆−√N∆´ does vanish, so the asymptotics are as if ∆ were
known. In the latter case, ∆N grows large relative to sampling error, so that the uniformity problem

does not arise to begin with.

The intuition highlights one channel through which superefficiency simplifies the analysis, namely

the vanishing of sampling variation in ∆N . There is a second, more subtle channel: Asymptotically,bθu = bθl+∆N , meaning that the limiting sampling distribution is univariate. This simplification allows

IM to calibrate cα through a single equation (2), even though the estimation problem is generally

5 I thank Thierry Magnac for suggesting this result.
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bivariate. One can avoid reliance on this simplification as follows: Let (c2l , c
2
u) minimize (bσlcl + bσucu)

subject to the constraint that

Pr

Ã
−cl ≤ z1,bρz1 ≤ cu +

√
N b∆bσu +

q
1− bρ2z2! ≥ 1− α (4)

Pr

Ã
−cl −

√
N b∆bσl −

q
1− bρ2z2 ≤ bρz1, z1 ≤ cu

!
≥ 1− α, (5)

where z1 and z2 are independent standard normal random variables.6 In typical cases, (c2l , c
2
u) will be

uniquely characterized by the fact that both of (4,5) hold with equality, but it is conceivable that one

condition is slack at the solution. Let

CI2α ≡
∙bθl − bσlc2l√

N
,bθu + bσuc2u√

N

¸
.

Then the following holds.

Proposition 2 Let assumptions 1(i)-(ii) and 3 hold. Then

lim
N→∞

inf
θ∈Θ

inf
P :θ0(P )=θ

Pr
¡
θ0 ∈ CI2α

¢
= 1− α.

Calibration of (c2l , c
2
u) takes into account that the underlying estimation problem is bivariate. Ex-

pression (4) ensures that the nominal size of CI2α equals at least (1− α) if θ0 = θl, equation (5) does

the same if θ0 = θu, where equality obtains if the according condition binds.7 In contrast, expression

(2) enforces cl = cu and properly calibrates both only if σl = σu and ρ = 1. In general, the nominal

size of CI1α for any finite N exceeds (1− α) at one end and falls short of it at the other one, so that the

interval appears invalid. This does not affect first-order asymptotics because for large ∆N , the testing

problem is asymptotically one-sided, whereas for small ∆N , superefficiency ensures that σl = σu and

ρ = 1 in the limit. Nonetheless, the nominal size of CI1α really converges to (1 − α) rather than

equalling it, and CI1α corresponds to a biased hypothesis test, i.e. Θ0 is not an upper contour set of

nominal coverage probability. The construction of CI2α avoids these issues; indeed, CI
2
α is literally

defined as the shortest confidence interval with correct nominal size.

The improvement may be mostly conceptual if superefficiency obtains, because CI1α and CI2α are

then asymptotically equivalent. It becomes more serious when superefficiency fails. The reason is

that validity of CI2α depends on assumption 3 only through the first channel mentioned above. This

dependency can be eliminated by a straightforward modification: Consider a shrinkage estimator

∆∗ ≡

⎧⎨⎩ b∆, b∆ > bN

0 otherwise
,

6Appendix B exhibits closed-from expressions for (4,5), illustrating that they can be evaluated without simulation.
7By the nominal size of CI at θl, say, I mean CI

1
σl
φ((x − θ̂l)/σ̂l)dx, i.e. its size at θl as predicted from sample

data. This size would be exact in finite samples if normal approximations were perfect and variances known. Confidence

regions are typically constructed by setting it equal to 1− α.

7



where bN is some pre-assigned sequence s.t. bN → 0 and bN
√
N → ∞. By replacing b∆ with ∆∗ in

the calibration of (c2l , c
2
u), one can artificially restore superefficiency where it is needed. Of course, this

comes at the aforementioned cost of inducing superefficiency, more on which below.

Let (c3l , c
3
u) minimize (bσlcl + bσucu) subject to the constraint that

Pr

Ã
−cl ≤ z1,bρz1 ≤ cu +

√
N∆∗bσu +

q
1− bρ2z2! ≥ 1− α

Pr

Ã
−cl −

√
N∆∗bσl +

q
1− bρ2z2 ≤ bρz1, z1 ≤ cu

!
≥ 1− α,

where z1 and z2 are as before, and define

CI3α ≡

⎧⎨⎩
hbθl − σlc

3
l√
N
,bθu + σuc

3
u√

N

i
, bθl − σlc

3
l√
N
≤ bθu + σuc

3
u√

N

∅ otherwise
.

Before discussing CI3α further, I state this paper’s final result.

Proposition 3 Let assumption 1(i)-(ii) hold. Then

lim
N→∞

inf
θ∈Θ

inf
P :θ0(P )=θ

Pr
¡
θ0 ∈ CI3α

¢
= 1− α.

The definition of CI3α reveals an additional modification: If bθu is too far below bθl, the interval is
empty, which can be interpreted as rejection of the maintained assumption that θu ≥ θl. In other

words, CI3α embeds a specification test. IM do not consider such a test, presumably for two reasons:

It does not arise in their leading application, and it is trivial under their assumptions or whenever bθu
and bθl are ordered by construction. But it is interesting in applications such as moment inequalities,
where b∆ < 0 is a generic possibility and samples with bθu much below bθl might raise doubts whether
θu ≥ θl. In other cases, the possibility of CI3α being empty may be unattractive. It can be avoided by

arbitrarily replacing ∅ in the above definition. One plausible alternative would be a Wald confidence

region based on imposing θu = θl, i.e. to estimate both θl and θu by a variance-weighted average bθ ofbθl and bθu and to construct a confidence region by adding and subtracting Φ−1 (1− α) standard errors

of bθ. Any such enlargement of CI3α will make it potentially conservative if ∆ = 0; adjusting (c3l , c3u) to
achieve exact size would cause complications.

Whichever way one resolves this issue, an intriguing aspect of CI3α is that it is analogous to CI2α

except for the use of ∆∗. (The event that bθl − bσlc3l /√N > bθu + bσuc3u/√N uniformly vanishes under

superefficiency and is impossible if bθu ≥ bθl.) Together, CI2α and CI3α therefore provide a unified

approach to inference for interval identified parameters. In contrast, CI1α does not become valid upon

replacing b∆ with ∆∗ in (3).
Some further remarks on these results are in order. First, inspection of proofs reveals that proposi-

tions 1 and 2 do not really require joint (as opposed to marginal) normality of estimators. Hence IM’s

8



result can be strengthened even further, although the additional gain in generality may be marginal.

Furthermore, joint normality cannot be dropped from lemma 3, so it is still needed if one wishes to

invoke the simple sufficient condition. Joint normality is also required to claim that CI2α has exact

nominal size and corresponds to a nominally unbiased test.

Second, two ways in which∆∗ can be modified are as follows. I defined a soft thresholding estimator

for simplicity, but making ∆∗ a smooth function of b∆ would also ensure validity and might improve

performance for∆ close to bN . Also, the sequence bN is left to adjustment by the user. While the law of

the iterated logarithm makes bN = (log logN)
1/2 a salient choice, such adjustment is generally subject

to the following trade-off: The slower bN vanishes, the less distortion is caused by shrinkage, but the

quality of uniform normal approximations deteriorates, and they break down for bN = O(N−1/2). I do

not expand on these possibilities to avoid redundancy with independent work by Andrews and Soares

(2007).

A modification of CI3α that is not recommended is to let c
3
l = Φ

−1 (1− 2α) and c3u = Φ−1 (1− 2α),
implying that CI3α = CI2α, whenever ∆∗ > 0. This would make CI3α shorter without affecting first-

order asymptotics, because shrinking b∆ suffices to ensure uniformity. But the new interval ignores the
two-sided nature of noncoverage risk and hence has nominal size below 1 − α (although approaching

1− α as N grows large). The improvement in length is, therefore, spurious.

Third, ∆∗ = 0 can be interpreted as failure of a pre-test to reject H0 : θu = θl, where the size of the

pre-test approaches 1 as N →∞. Thus, shrinking b∆ resembles the “conservative pre-test” solution to
the parameter-on-the-boundary problem given by Andrews (2000, section 4). Nonetheless, one should

not interpret CI3α as being based on model selection. If θu = θl were known, the aforementioned Wald

confidence region would be efficient, and a post-model selection confidence region would use it — but it

would be invalid if ∆N = O(N−1/2). CI3α avoids the trap by employing a shrinkage estimator of ∆ in

the pre-test but not in the subsequent construction of the interval. Having said that, there is a tight

connection between problems encountered here and known issues with post-model selection estimators

(Leeb and Pötscher 2005), the underlying problem being discontinuity of pointwise limit distributions.

In particular, now that supereffiency of ∆∗ is induced rather than assumed, it does follow that ∆∗

estimates ∆N with large local risk near zero. Uniform validity of CI3α accordingly comes at the price

of asymptotic dissimilarity, i.e. the interval is conservative along certain local parameter sequences.

This feature cannot be avoided by any of the modifications mentioned above (or in Andrews 2000 or

Andrews and Soares 2007).

Finally, this paper’s assumptions improve on preceding work but still entail substantial loss of

generality. Uniform validity of normal approximations could be replaced by uniform validity of the

bootstrap after minor adjustments, and
√
N -consistency plays no special role in and of itself. But

these modifications will not help if upper and lower bounds are characterized as minima respectively
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maxima over a number of moment conditions (as in the hospitals example of Pakes et al. 2007;

but, see subsequent work by Chernozhukov et al. 2008). Also, it is not obvious how to generalize

CI3α to a multivariate moment conditions (but, see subsequent work by Fan and Park 2007). Other,

independently developed methods (Andrews and Guggenberger 2007, Andrews and Soares 2007) will

work more generally. When CI3α applies, however, it is attractive for numerous reasons: It is trivial to

compute, it is by construction the shortest interval whose nominal size is exact at both ends, and it is

is easily adjusted to the presence or absence of superefficiency.

4 Conclusion

This paper extended Imbens and Manski’s (2004) analysis of confidence regions for partially identified

parameters. Core findings are as follows. I establish that one assumption used for IM’s final result

boils down to locally superefficient estimation of a nuisance parameter. This fact appears to have gone

unnoticed before. The inference problem is then re-analyzed with and without superefficiency. IM’s

confidence region is found to be valid under weaker conditions than theirs, a sufficient condition being

that estimators of bounds are jointly asymptotically normal and ordered by construction. Furthermore,

valid inference can be achieved by a confidence region that corresponds to a nominally unbiased

hypothesis test, is easily adapted to the case without superefficiency, and embeds a specification test.

A conceptual contribution is to recognize that much of the inference problem stems from pre-

estimation of ∆. This insight allows for brief and transparent proofs and clarifies the connection to

related work. For example, once the boundary problem is recognized, analogy to Andrews (2000)

suggests that a straightforward normal approximation, as well as the bootstrap, will fail, whereas

subsampling might work. Indeed, carefully specified subsampling techniques are known to yield valid

inference for parameters identified by moment inequalities, of which the present scenario is a special

case (Andrews and Guggenberger 2007, Chernozhukov et al. 2007, Romano and Shaikh 2008). The

bootstrap, on the other hand, does not work in the same setting, unless it is modified in several ways,

one of which is analogous to shrinking b∆ (Bugni 2007). Against the backdrop of these (subsequent to
IM) results, validity of simple normal approximations in IM appears as a puzzle that is now resolved.

At the same time, the updated version of these normal approximations has practical value because it

provides closed-form and otherwise attractive inference for important, if relatively simple, applications.

A Proofs

Preliminaries Most proofs consider sequences {PN} that will be identified with the implied se-
quences {∆N , θN} ≡ {∆(PN ), θ0(PN )}. For ease of notation, I suppress the N subscript on (θl, σl, σu)
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and on estimators. Some algebraic steps treat (θl, σl, σu) as constant; this is w.l.o.g. because by com-

pactness implied in assumption 1(ii), any sequence {PN} induces a sequence of values (θl, σl, σu) with
finitely many accumulation points, and the argument can be conducted separately for the according

subsequences.

Proofs of lemma 3 and the propositions establish that inf{θN}⊆Θ inf{PN}:θN∈Θ0(PN ) Pr
¡
θN ∈ CIiα

¢
→

1 − α, i = 1, 2, 3. These are pointwise limits, but they imply the claims because they are taken over

sequences, in particular they apply along least favorable sequences. Proofs present two arguments,

one for the case that {∆N} is “small” and one for the case that it is “large” in a sense that will be
delimited. Any sequence {PN} can be decomposed into one large and one small subsequence.

Lemma 1 The aim is to show that if ∆N → 0, then

∀δ, ε > 0,∃N∗ : N ≥ N∗ =⇒ Pr
³√

N
¯̄̄ b∆−∆N

¯̄̄
> δ

´
< ε.

Fix δ and ε. By assumption 1(iii), there exist N0, v > 0, and K s.t.

N ≥ N0 =⇒ Pr
³√

N
¯̄̄ b∆−∆N

¯̄̄
> K∆v

N

´
< ε

uniformly over P (and hence∆N ). As∆N → 0, one can chooseN1 s.t. N ≥ N1 ⇒ ∆N ≤ δ1/vK−1/v ⇒
K∆v

N ≤ δ. Combining these and choosing N∗ ≡ max{N0, N1} yields

N ≥ N∗ =⇒ ε > Pr
³√

N
¯̄̄ b∆−∆N

¯̄̄
> K∆v

N

´
≥ Pr

³√
N
¯̄̄ b∆−∆N

¯̄̄
> δ

´
as required.

Lemma 2 Parameterize θ0 as θ0 = θl + a∆N for some a ∈ [0, 1]. Then algebra reveals that

Pr
³
θ0 ∈ fCIα´

= Pr

⎛⎝−ecα bσl
σl
−
√
N

σl
a∆N ≤

√
N
³
θl − bθl´
σl

≤
√
N

σl
(1− a)∆N + ecα bσl

σl

⎞⎠
→ Φ

Ãecα + √N
σl
(1− a)∆N

!
− Φ

Ã
−ecα − √N

σl
a∆N

!
uniformly over P. Besides uniform asymptotic normality of bθl, this convergence statement uses that
by uniform consistency of bσl in conjunction with the lower bound on σl, bσl/σl → 1 uniformly, and also

that the derivative of the standard normal c.d.f. is uniformly bounded.

Evaluation of derivatives establishes that the last expression in the preceding display is strictly

concave in a, hence it is minimized at a ∈ {0, 1}. But in those cases, the algebra simplifies to

Pr
³
θl ∈ fCIα´→ ΦÃ√N

σl
∆N + ecα!− Φ (−ecα) = 1− α

and similarly for θu.

11



Lemma 3 By assumption 3,
√
N(b∆−∆N)→ N(0, σ2∆) uniformly in P, where σ2∆ ≡ σ2l+σ

2
u−2ρσlσu.

Hence, one can fix a sequence εN → 0 s.t. supP∈P,d∈R
¯̄̄
Pr(
√
N(b∆−∆N ) ≤ d)− Φ(d/σ2∆)

¯̄̄
≤ εN for

all N . (The lemma restates lemma 2 if σ2∆ = 0, so this case can be ignored.) Fix a nonpositive

sequence δN → −∞ s.t. Φ(γδN ) > O(εN ) for any fixed γ ≥ 0. This is possible because of well known
uniform bounds on the standard normal c.d.f., e.g. Φ(γδN ) > −(γδN )−1(2π)−1/2 exp(−(γδN )2/2) as
δN → −∞; using this bound, one can verify that δN = −(log (− log εN ))1/2 will do.
Fix any sequence PN s.t. ∆N ≤ aN ≡ −δNN−1/2. I will show that σ2∆ → 0, implying assumption

3. Assume this fails, then σ2∆ must have an accumulation point σ
2
∆∞ > 0. Along any subsequence

converging to σ2∆∞, one would have

Pr
³bθu ≤ bθl´ = Pr³b∆ ≤ 0´ = Pr³√N(b∆−∆N ) ≤ −

√
N∆N

´
≥ Φ

³
−
√
N∆N/σ∆∞

´
− εN ≥ Φ (δN/σ∆∞)− εN > 0

for N large enough, a contradiction. Note how the conclusion of lemma 2 (and hence, assumption

1(iii)) is not implied because for ∆N > aN , the second inequality above might fail.

Proposition 1 Let ∆N ≤ aN , then
√
N
¯̄̄ b∆−∆N

¯̄̄
p→ 0 by assumption 3, thus

√
N
³bθu − θu

´
=
√
N
³bθl + b∆− θl −∆N

´
p→
√
N
³bθl − θl

´
.

In conjunction with conditions (i)-(ii), this implies σu = σl, hence bσu−bσl p→ 0. Also using assumption

3 again, it follows that

Φ

Ã
c1α +

√
N

b∆
max {bσl, bσu}

!
p→ Φ

µ
c1α +

√
N
∆Nbσl

¶
and the argument can be completed as in lemma 2.

Let∆N > aN , then
√
N∆N →∞, hence lim supN→∞

√
N (θN − θl) =∞ or lim supN→∞

√
N (θu − θN ) =

∞ or both. Some algebra reveals that

Pr
¡
θN ∈ CI1α

¢
= Pr

³
−c1αbσl ≤ √N (θN − θl) +

√
N
³
θl − bθl´ ≤ √N b∆+ c1αbσu´

= Pr
³
−c1αbσl ≤ √N (θN − θl) +

√
N
³
θl − bθl´´− Pr³√N (θN − θl) +

√
N
³
θl − bθl´ >

√
N b∆+ c1αbσu´ .

Assume lim supN→∞
√
N (θN − θl) < ∞. By consistency of b∆, divergence of √N∆N implies diver-

gence in probability of
√
N b∆. Thus

Pr
³√

N (θN − θl) +
√
N
³
θl − bθl´ >

√
N b∆+ c1αbσu´

≤ Pr
³√

N
³
θl − bθl´ >

√
N b∆−√N (θN − θl)

´
→ 0,

12



where I used that c1αbσu ≥ 0 by construction and that √N ³θl − bθl´ converges to a random variable by

assumption. It follows that

lim
N→∞

Pr
¡
θN ∈ CI1α

¢
= lim

N→∞
Pr
³
−c1αbσl ≤ √N (θN − θl) +

√
N
³
θl − bθl´´

≥ lim
N→∞

Pr
³
−c1αbσl ≤ √N ³θl − bθl´´ = 1− Φ(c1α) ≥ 1− α,

where the first inequality uses
√
N (θN − θl) ≥ 0, and the second inequality uses the definition of c1α

as well as convergence of bσl and √N ³θl − bθl´ /σl.
For any subsequence of {PN} s.t.

√
N (θN − θu) fails to diverge, the argument is symmetric. If

both diverge, coverage probability converges to 1. To see that a coverage probability of 1− α can be

attained, consider the case of ∆ = 0.

Proposition 2 For a short proof that does not use joint normality, inspection of (4-5) reveals that

CI2α is asymptotically equivalent to CI
1
α given local superefficiency. The longer argument below shows

why CI2α generally has exact nominal size and will also be needed for proposition 3. Let (ecl,ecu) fulfil
Pr

Ã
−ecl ≤ z1, ρz1 ≤ ecu + √N∆

σu
+
p
1− ρ2z2

!
≥ 1− α

Pr

Ã
−ecl − √N∆

σl
+
p
1− ρ2z2 ≤ ρz1, z1 ≤ ecu! ≥ 1− α

and write

lim
N→∞

Pr

µ
θl ∈

∙bθl − eclbσl√
N
,bθu + ecubσu√

N

¸¶
= lim

N→∞
Pr

Ã
−ecl bσl

σl
≤
√
N

σl

³
θl − bθl´ , √N

σl

³
θu − bθu´ ≤ √N

σl
∆+ ecu bσu

σl

!

= lim
N→∞

Pr

Ã
−ecl ≤ √N

σl

³
θl − bθl´ , 1

σl

µ
ρ
σu
σl

√
N
³
θl − bθl´− σu

p
1− ρ2z2

¶
≤
√
N

σl
∆+ ecuσu

σl

!

= lim
N→∞

Pr

Ã
−ecl ≤ z1, ρz1 ≤ ecu + √N

σu
∆+

p
1− ρ2z2

!
(6)

≥ 1− α (7)

uniformly. Here, the first step can be verified algebraically; the second step uses that by assumption,³√
N
³
θu − bθu´ |√N ³θl − bθl´´ d→ N

µ
ρ
σu
σl

√
N
³
θl − bθl´ , σ2u(1− ρ2)

¶
uniformly, that (bσl, bσu) are uniformly consistent, and that σl, σu ≥ σ, so that neither can vanish; and

the third step uses convergence of
√
N
σl

³
θl − bθl´. The argument for θu is similar; note that in contrast

to the very first step of proposition 1, assumption 3 was not used.

13



As before, for any sequence {∆N} s.t. ∆N < aN , superefficiency implies that (c2l , c
2
u) is consistent

for (ecl,ecu) and CI2α therefore valid at {θl, θu}. Convexity of coverage probability over [θl, θu] follows
as before. For ∆N ≥ aN , the argument entirely resembles proposition 1. Finally, (7) will bind if (4)

binds, implying that CI2α will then have exact nominal size at θl. A similar argument applies for θu.

But (c2l , c
2
u) can minimize (clbσl + cubσu) subject to (4-5) only if at least one of (4-5) binds, hence CI2α

is nominally exact.

Proposition 3 Let cN ≡
¡
N−1/2bN

¢1/2
, thus N1/2cN =

¡
N1/2bN

¢1/2 → ∞, and for parameter
sequences s.t. ∆N > cN , the proof is again as before. For the other case, consider (ecl,ecu) as defined in
the previous proof. By uniform convergence of estimators and uniform bounds on (σl, σu), Pr(b∆ ≤ bN )

is uniformly asymptotically bounded below by

Φ
³√

N (bN − cN ) /2σ
´
= Φ

µµ
N1/2bN −

³
N1/2bN

´1/2¶
/2σ

¶
→ 1.

Hence, ∆∗ = 0 ≤ ∆ with probability approaching 1. Expression (6) is easily seen to increase in ∆ for
every (ecl,ecu), hence CI3α is valid (if potentially conservative) at θl. The argument for θu is similar.
Now parameterize the true parameter value as θN ≡ aθl + (1− a)θu for some a ∈ [0, 1], then some

algebra yields

Pr

µ
θN ∈

∙bθl − c3l bσl√
N
,bθu + c3ubσu√

N

¸¶
= Pr

³√
N(1− a)

³
∆− b∆´−√N(1− a)∆− c3l bσl

≤ a
√
N
³
θl − bθl´+ (1− a)

√
N
³
θu − bθu´ ≤ √Na

³b∆−∆´+√Na∆+ c3ubσu´ .
Consider varying ∆, holding (θl, σl, σu, ρ, a) constant. The cutoff values c3l and c3u depend on ∆ only

through ∆∗, but recall that Pr(∆∗ = 0) → 1. The estimators (bσl, bσu) are uniformly consistent, and
the joint limiting distribution of all other random variables depends only on (σl, σu, ρ, a). Hence, the

preceding probability’s limit is minimized at ∆ = 0, in which case θN = θl and coverage was already

shown.

B Closed-Form Expressions for (cl, cu)

This appendix provides a closed-form equivalent of (4,5). These expressions can be written as

Z cl

−∞
Φ

⎛⎝ bρq
1− bρ2 z +

cuq
1− bρ2 +

√
N b∆

bσuq1− bρ2
⎞⎠ dΦ (z) ≥ 1− α

Z cu

−∞
Φ

⎛⎝ bρq
1− bρ2 z +

clq
1− bρ2 +

√
N b∆

bσlq1− bρ2
⎞⎠ dΦ (z) ≥ 1− α
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if −1 < bρ < 1,
Φ (cl)− Φ

Ã
−cu −

√
N b∆bσu

!
≥ 1− α

Φ (cu)− Φ
Ã
−cl −

√
N b∆bσl

!
≥ 1− α

if bρ = 1 (compare these expressions to (2)), and
Φ

Ã
min

(
cl, cu +

√
N b∆bσu

)!
≥ 1− α

Φ

Ã
min

(
cu, cl +

√
N b∆bσl

)!
≥ 1− α,

implying that Φ (cl) = Φ (cu) = 1 − α at the minimization problem’s solution, if bρ = −1. There is
no discontinuity at the limit because Φ

µ
ρ√
1−ρ2

z + cu√
1−ρ2

+
√
N∆

σu
√
1−ρ2

¶
→ I

n
z ≥ [≤]cu +

√
N∆
σu

o
asbρ→ 1[−1].
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