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Abstract

This note adds to the recent research project on treatment choice under ambiguity. I generalize

Manski�s (in press) analysis of minimax regret treatment choice by considering a more general setting

and, more importantly, by solving for the treatment rule given �nitely many (as opposed to two)

treatments. The most interesting �nding is that with three or more undominated treatments, the

minimax regret treatment rule may assign the same treatment to all subjects; thus, the most salient

feature of the two-treatment case does not generalize.
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1 Motivation and Results

Consider a decision maker who must assign subjects to one of several treatments. The success of treat-

ments is measured by some outcome variable Y , and the decision maker is an expected value maximizer,

so if she knew the expected outcomes induced by di¤erent treatments, her problem would be trivial.

However, her information is incomplete; speci�cally, she only knows that one of a set S of states of the

world, identi�ed with mappings from treatments to expected outcomes, has obtained. Since no prob-

ability distribution over S is provided, she faces a decision problem under ambiguity (or �Knightian

uncertainty�).

Manski (in press, see also Brock 2004) recently analyzed the special case of this problem that arises

when the ambiguity is due to missing data, proposing minimax regret as the decision criterion and

analyzing some of its features. This note extends his analysis by considering a more general decision

environment and, more importantly, by allowing for �nitely many as opposed to two treatments. The

binary problem�s most intriguing feature, namely that the minimax regret treatment rule assigns positive

fractions of the population to either treatment unless one of the treatments is dominant, turns out not

to generalize.

It is helpful to �rst restate the problem analyzed by Manski. Let there be treatments t = 1; : : : ; T

that induce (random) potential outcomes (Yt)
T
t=1 over a bounded support, say Yt 2 [0; 1]. If �t � E(Yt)

were known for every t, treatment would be assigned accordingly. But observations of Yt are plagued by

missing data, and only a fraction pt of realizations is observed. De�ning E1(Yt) � E(YtjYt is observable)

and E0(Yt) � E(YtjYt is missing), the decision maker�s knowledge of �t is summarized by

�t = ptE1(Yt) + (1� pt)E0(Yt);

where E1(Yt) and pt are known but E0(Yt) is not. (I will abstract from estimation problems, thus

�observable� is synonymous with �known.�) It follows that �t 2 [ptE1(Yt); ptE1(Yt) + 1 � pt], but this

information may not su¢ ce to identify the best treatment; nonetheless, some treatment rule has to

be adopted. Manski (in press) proposes to evaluate treatment rules according to minimax regret. To

formalize this, denote treatment rules by � 2 �T�1, where �T�1 is the (T � 1)-dimensional unit simplex

in RT and the t-th component of �, �t henceforth, is the probability assigned to treatment t. Also letting

S � �t [ptE1(Yt); ptE1(Yt) + 1� pt] collect all possible con�gurations of (�t)
T
t=1, the minimax regret

ranking is given by

� � �0 () max
s2S

(
max

d2�T�1

(X
t

dt�t

)
�
X
t

�t�t

)
� max

s2S

(
max

d2�T�1

(X
t

dt�t

)
�
X
t

�0t�t

)
:

Since
P

t �t�t is the expected outcome induced by treatment rule �, this can be thought of as a maximin

criterion but with respect to ex-post e¢ ciency loss rather than utility. For motivations and further

discussions, see Manski (2004) and Stoye (2005b); the latter also contains many historical references.
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Manski (in press) �nds the minimax regret treatment rule when T = 2. A salient observation, replicated

in Brock (2004) and as corollary 1 below, is that unless the better treatment is identi�ed from the data,

this treatment rule is mixed, i.e. it allocates a positive fraction of the population to each treatment.

I generalize this result in two ways. Firstly, I provide the solution for arbitrary �nite T . Secondly,

I allow for di¤erent informational settings as captured by information sets S. Speci�cally, the only

structure imposed on S is that if �
t
� infs2S f�tg and �t � sups2S f�tg, then S contains all of the states

fstgTt=1, where st �
�
�
1
; �
2
; : : : ; �

t�1; �t; �t+1; : : : ; �T

�
. Intuitively, this amounts to two restrictions:

� The bounds that one is able to place on �t are tight, i.e. they are achieved in some feasible state

of the world s.

� Cross-restrictions between states are limited; in particular, it is possible that some treatment t is

as good as possible, and all other treatments are as bad as possible, at the same time.

Manski�s (in press) scenario emerges as special case with S as given above, but the requirement that

fstgTt=1 � S is signi�cantly weaker. Bounds on expectations can arise from many other sources of partial

identi�cation as surveyed in Manski (2003), interval data and bounds on c.d.f.�s being but two examples.

Similar informational settings also occur in the literature on interval probabilities (Walley 1991) and in

Robust Bayesian inference (Wasserman & Kadane 1992). As long as there are no or appropriately limited

cross-restrictions, the present analysis will apply to all of these cases.

The according generalization of proposition 1 in Manski (in press) is stated below. It is established by

analyzing a �ctitious zero-sum game between the decision maker and a malicious Nature whose expected

utility equals the decision maker�s expected regret. The Nash equilibria of this game are known to

characterize all minimax regret treatment rules. In a �rst step, I show that Nature�s action set can be

reduced to fstgTt=1 (hence the requirement that S contain this set). It is then possible to analytically

characterize the equilibria. A complication arises because there are two mutually exclusive types of

them, captured below by cases (i) and (ii) with treatment rules � respectively ��. (At their boundary in

parameter space, a hybrid case obtains and is labeled (iii).) In either equilibrium, the expected utility of

action st to Nature turns out to be indexed by a weighted average �t � �t�t+(1� �t)�t of the according

treatment�s best- and worst-case expected outcome, the weight being the probability with which the

treatment is assigned. With this in mind, the expressions for � respectively �� can be derived from

Nature�s best-response condition.

Proposition 1 Minimax Regret Treatment Rules for Arbitrary T

Order treatments such that �1 � : : : � �T , where the tie-breaking rule is arbitrary. Let � � maxt
n
�
t

o
,

call a treatment t maximin if �
t
= �, and de�ne � 2 �T�1 and � 2 R implicitly by

�t = max

(
�t � �
�t � �t

; 0

)
;8t 2 f1; : : : ; Tg
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and t� 2 f1; : : : ; Tg by

t� � max
(
N :

NX
n=1

� � �
n

�n � �n
� 1
)

with the convention that t� � T + 1 if
PT

t=1

���
t

�t��t
< 1. Consider the following cases.

(i) If t� > max ft : �t > 0g, then �� = � is the unique minimax regret treatment rule.

(ii) If t� � max ft : �t > 0g and
Pt�

t=1

���
t

�t��t
< 1, then �� 2 �T�1 is a minimax regret treatment rule

i¤

��t

8<: � max
n
�t��t�
�t��t

; 0
o
; t is maximin

= max
n
�t��t�
�t��t

; 0
o
; otherwise

:

(iii) Otherwise, �� 2 �T�1 is a minimax regret treatment rule i¤

��t

8<: � max
n
�t���
�t��t

; 0
o
; t is maximin

= max
n
�t���
�t��t

; 0
o
; otherwise

for some �� 2
�
max

�
�; �t�+1

	
; �t�

�
.

A su¢ cient condition for the minimax regret treatment rule to be unique is that the maximin treatment

is unique and
Pt�

t=1

���
t

�t��t
6= 1.

Corollary 1 Let T = 2, then the unique minimax regret treatment rule is

�� =

8>>><>>>:
(0; 1) ; �

2
� �1�

�1��2
�1��2+�2��2

;
�2��1

�1��1+�2��2

�
; minf�1; �2g > maxf�1; �2g

(1; 0) ; �
1
� �2

:

2 Proofs and Discussion

Proposition 1. Consider the following zero-sum game between the decision maker and Nature: (i)

The decision maker chooses a treatment rule � 2 �T�1. Nature chooses a potentially mixed strategy

� 2 �S, that is, a distribution over states of the world. (ii) A neutral meta-player draws s 2 S according

to �. (iii) The decision maker�s loss is R(�; s) � maxt f�tg �
P

t �t�t. Both players maximize expected

utility. Then there exist convex sets D� � �T�1 and S� � �S s.t. (��; ��) is a Nash equilibrium of the

game i¤ (��; ��) 2 D� � S�; furthermore, D� is the set of minimax regret treatment rules (e.g., see the

appendix of Stoye 2005a).

Assume treatments are ordered as stated in the proposition. Fix any treatment rule �. Any best

response to � is supported on

argmax
s2S

R(�; s) = argmax
s2S

(
max
t
f�tg �

X
t

�t�t

)
:

The objective function increases in �m i¤ �m = maxt f�tg and decreases in it otherwise (weakly so if

�t = 0). Thus, Nature always has a best response in the set fstgTt=1 as de�ned above. Consider the
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restricted game in which Nature�s strategy space is reduced to this set; then it follows that any Nash

equilibrium of this game is a Nash equilibrium of the unrestricted one. Since furthermore, every minimax

regret treatment rule �� is a best response to every worst-case prior ��, an exact characterization of

the minimax regret treatment rules for the restricted game implies an exact characterization for the

unrestricted one. I will now provide the former.

In the restricted strategy space, nature�s strategy � can be identi�ed with a vector � 2 �T�1, where

�t = Pr(s = st). Observe that given �, treatment t has expected outcome �t =
�
�t�t + (1� �t)�t

�
.

Let (��; ��) be a Nash equilibrium. To be a best response to ��, �� must solve

min
�2�T�1

!

(
Esj��

 
max
t
f�tg �

X
t

�t�t

!)

= min
�2�T�1

!

(
Esj��

�
max
t
f�tg

�
� Esj��

 X
t

�t�t

!)
:

The left-hand expectation does not vary with �, so that �� must maximize Esj�� (�t�t�t), i.e. expected

outcome given ��. Hence, ��t > 0 only if �
�
t�t + (1� ��t )�t = �

� � maxt
n
��t�t + (1� ��t )�t

o
. Further-

more, (��; ��) is known to induce expected outcome ��; observe in particular that �� � �.

If �� maximizes regret against ��, it must also maximize regret against �� under the additional

constraint that ��t�t + (1� ��t )�t � �
�;8t, because by construction, this constraint will not bind at ��.

Hence, �� must solve

max
�2�T�1

!

(X
t

�t�t � ��
)

s:t: ��t�t + (1� ��t )�t � �
�;8t;

where I also use the knowledge that in equilibrium, Esj�� (
P

t �t�t) = �
�.

The above problem is linear in every �t; since treatments are ordered according to �t, it is solved by

maximizing the probability mass placed on lower-numbered treatments:

��t =

8>>><>>>:
����

t

�t��t
; t < et

1�
P

t6=et ��t ; t = et
0; t > et

; (1)

where et � maxnN � T : �Nn=1
����

t

�t��t
� 1
o
.

But �� being a best response to �� also requires that

8t; t0 s.t. ��t ; ��t0 > 0 : R(��; st) = R(��; st0)

=)
X
i 6=t
��i (�t � �i) =

X
i 6=t0

��i (�t � �i)

=) (1� ��t )�t � ��t0�t0 = (1� ��t0)�t0 � ��t�t
=) ��t�t + (1� �

�
t )�t = ��t0�t0 + (1� �

�
t0)�t0
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and

8t; t0 s.t. ��t > 0 = ��t0 : R(��; st) � R(��; st0)

=) ��t�t + (1� �
�
t )�t � ��t0�t0 + (1� �

�
t0)�t0 :

Hence, �� is partially characterized by the fact that there exists � s.t.

��t�t + (1� �
�
t )�t

8<: = ��; ��t > 0

� ��; ��t = 0

() ��t

8<: = �t���
�t��t

; ��t > 0

� �t���
�t��t

; ��t = 0
: (2)

Of course, ��t must also be nonnegative, so that
�t���
�t��t

can be replaced with max
n
�t���
�t��t

; 0
o
in [2]. To

proceed with the characterization, one must distinguish two cases.

Case 1: For all t, ��t = max
n
�t���
�t��t

; 0
o
. Since also �t�

�
t = 1, this case generates (T + 1) linear

equations in (T + 1) unknowns. If one guesses �� = maxt f�tg, then it is easily seen that �t��t = 0 is

implied. On the other hand, a guess of �� = �
1
implies that ��1 = 1 and hence �t�

�
t � 1. For intermediate

values of ��, the implied value of �t�
�
t is continuously decreasing in �

�, hence �t�
�
t = 1 holds for exactly

one �. The case therefore generates a unique candidate ��.

Best response conditions now constrain �� as follows:

��t > 0 =) ��t�t + (1� ��t )�t = �
� =) ��t =

�� � �
t

�t � �t

��t = 0 =) ��t�t + (1� ��t )�t � �
� =) ��t �

�� � �
t

�t � �t
:

If t� > max ft : �t > 0g, then the above constraints are consistent with [1]. It can then be straightfor-

wardly veri�ed that (��; ��) constitutes a Nash equilibrium and that �� is characterized as in case (i). If

t� � max ft : �t > 0g and the above constraints imply that �t��t > 1, the equilibrium fails. If �t��t � 1

is implied, the equilibrium will exist but may be nested within case (iii).

Case 2: For some t, ��t > max
n
�t��
�t��t

; 0
o
. This implies that the decision maker chooses with

positive probability some treatments t0; t00; : : : with ��t0 = �
�
t00 = : : : = 0, hence their expected outcomes

are equal to �
t0
; �
t00
; : : :. This is consistent with �� being a best response only if �

t0
= �

t00
= : : : = ��;

since �� � �, it must be the case that all of these treatments are maximin and that �� = �.

Expression [1] now fully characterizes ��. If
Pt�

t=1

���
t

�t��t
> 1, then

��t� <
� � �

t

�t � �t
=) ��t� = 0:
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This is consistent with [2] only if �t� = �
�. With �� thus de�ned, expression [2] bounds every ��t from

below. If these lower bounds sum to more than one, the candidate equilibrium fails. Otherwise, every

�� that ful�ls the bounds and has �t�
�
t = 1 is a best response to ��. (If there is exactly one maximin

treatment, �� is unique.)

In the knife-edge case that
Pt�

t=1

���
t

�t��t
= 1, �� may not be uniquely determined. However, inspection

of [2] reveals that �� � �t� (because ��t� � 0) and that �� � �t�+1 (because ��t�+1 = 0). An alternative

lower bound on �� is generated by assuming that all inequalities in [2] bind, i.e. by presuming case (i). (If

this constraint binds, both cases yield valid equilibria, with the set of minimax regret rules characterized

under case 2 containing the �� characterized in case 1.) Any choice of �� that is consistent with these

constraints will generate a �� s.t. (��; ��) constitutes a Nash equilibrium.

That one of the cases will yield a Nash equilibrium is not obvious from the above. Notice, however,

that the cases are exhaustive, and by existence of a Nash equilibrium, one of them must yield at least one

equilibrium. If both cases yielded valid sets of equilibria with the equilibrium from case (i) not contained

in the equilibria from case (ii), the set of Nash equilibria would be disconnected, contradicting convexity.

Also, su¢ ciency of the conditions is easily established.�

Corollary 1. Let T = 2 and �
1
< �2 as well as �2 < �1. (For the other cases, �

� is obvious.)

Assume by contradiction that �� = �, then ��t will be zero if t is maximin and will be less than one

otherwise, implying that �t��t < 1. Hence, case (i) applies, and [2] can be solved for �
�.�

Mathematically, proposition 1 implies that the set of minimax regret treatment rules is the convex hull

of a �nite number of extremal treatment rules. Whilst somewhat tedious to describe, these extrema are

easy to evaluate, and once identi�ed, their validity can be checked by paper-and-pencil methods.1 Indeed,

the only generic condition under which the set is not a singleton is when case (ii) obtains and there are

several maximin utility treatments, in which case only their aggregate probability will be determined.

Uniqueness of �� will also fail in case (iii), but this case is nongeneric in the sense that it requires a linear

equality in parameters to hold; intuitively, it connects the �rst two cases at their boundary in parameter

space.2

Other than this, general intuitions about �� seem to be limited to the fact that it is always supported

on the t� best treatments in terms of the maxmax-ordering, i.e. according to �t, where t
� is some number

between 1 and T . Two more features are illustrated by the following examples.

Example 1 Let T = 2 and let bounds on �t be as follows:

1MATLAB code that evaluates proposition 1 is posted on the author�s webpage at http://homepages.nyu.edu/~js3909/.
2Examples of either form of non-unique solutions are given in an online appendix on the aforementioned webpage.
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t 1 2

�t 5 3

�
t

2 0

Then �� = (5=6; 1=6) uniquely.

Example 2 Let T = 3 and let bounds on �t be as follows:

t 1 2 3

�t 5 3 3

�
t

2 0 0

Then �� = (1; 0; 0) uniquely.

Firstly, example 2 is generated from example 1 by adding a treatment that is seemingly like treatment

2.3 As a result, preferences regarding the �rst two treatments change, and the second treatment, which

was previously selected with positive probability, is not chosen any more. Some readers may �nd this

counterintuitive �it is certainly not obvious that treatment 2 got worse due to the presence of treatment

3. The observation illustrates that minimax regret violates the well-known Independence of Irrelevant

Alternatives axiom.

Secondly, �� in example 2 is not mixed, i.e. the most salient aspect of the two-treatment case does not

carry over. This �nding is of general interest because researchers investigating minimax regret decision

rules usually �nd these to mix, often in contrast to maximin utility rules (Bergemann & Schlag 2005,

Brock 2004, Manski 2004, Schlag 2003, Stoye 2005a). To understand why it obtains, it is instructive to

informally prove that �� will always mix in the case of two (non-dominating) treatments. Suppose by

contradiction that �� is concentrated at t = 1, then Nature�s best response in the �ctitious game is to

deterministically choose state s2. But the decision maker�s best response to that would be to assign all

subjects to treatment 2. The best response correspondence therefore cycles over pure strategies. In short,

the result obtains because 2� 2 anti-coordination games have only fully mixed equilibria.4

But this observation does not generalize to more complex games. In example 2 above, one of Nature�s

best responses to �� is to mix equally over s2 and s3; �
� then remains the decision maker�s strict best

response and hence is the unique minimax regret treatment rule. Notice that �2 = �3 is necessary for

this to work, thus a non-mixing �� obtains only in speci�c, although interesting, cases.
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