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This web appendix provides alternative minimax regret solutions to the decision problems analyzed

in section 4. Recall that the minimax regret treatment rules found there coincide with the benchmark

solution up to some critical sample size, but do not take into account additional data that would take

the sample size beyond this critical size (modulo randomization to overcome an integer problem). It

is possible to construct rules that nominally take account of all data. For example, one could base

decisions on a randomly selected subsample from the data as long as this subsample is appropriately

sized with probability 1. I will here present a very different solution that does not discard any data

point either deterministaically or randomly. Sensitivity of the decision rule to the signal is rather toned

down by randomizing between ∗1 and ∗3 respectively 
∗
4.

I show the result explicitly for the missing data scenario.

Proposition 1 Consider the missing data model of example 3, thus e∆ ∈ [(1− )∆−  (1− )∆+ ].

Then minimax regret is achieved by the decision rule

∗ = ∗∗1 + (1− ∗)∗3
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In particular, ∗1 is optimal if  ≤ ∗ (as before).

1



Proof. The proof will be conducted explicitly for randomized treatment assignment with  odd;

the extension to the other scenarios is as before. The least favorable prior is as before.

Step 1: Simplifying Natures best response problem.

This step is essentially as before, and Nature’s best-response problem can ultimately be written as

max
∆∈[max{−(1−)−1}1]

(∆;∗ ) (∆;∗ ) = ((1− )∆+ ) (1− ∗1(∆)− (1− ∗)3(∆))  (1)

where 3(∆) = E
∗
3().

Step 2: Introducing a simplified game.

For this and the next few steps, consider a simplified game in which the decision maker’s strategy

set consists of randomizations over {1 3}. Identify feasible strategies for DM with probabilities  of

playing 1. Nature, on the other hand, is restricted to choosing ∆ (possibly at random); every choice of

∆ is identified with even randomization over (1 (1+∆)2 0 (1−∆)2) (0 (1−∆)2 1 (1+∆)(2)).
This game has a Nash equilibrium (by the Glicksberg fixed point theorem). Nature’s best-response

problem in this game is (1), and the previous step’s analysis showed that any best response for Nature

in this game is also a best response for her in the original one. On the other hand, it is easy to see the

following: If Nature’s strategy is supported on (0 1], then ∗ = 1 is a unique best response for DM in

both the simplified and the original game. If Nature plays ∆∗ = 0, then the sample data are noise and

any choice of  is a best response in both the simplified and the original game. If Nature’s strategy is

supported on [−1 0), then ∗ = 0 is a unique best response in the simplified (albeit not the original)

game. The latter case (and other, more intricate ones) will not in fact obtain, so that equilibria of the

simplified game correspond to equilibria of the original one.

Step 3: Equilibrium when  ≥ 12.
As before.

Step 4: Equilibrium when ∗ = 1.

As before.

Step 5: Analysis of revealing equilibria in general.

Call an equilibrium revealing if Nature’s strategy is not degenerate at ∆∗ = 0. Suppose by con-

tradiction that Nature’s strategy is supported on [−1 0), then DM’s best response is to set ∗ = 0,

but then the algebra of step 3 can be adapted to show that Nature’s best response is some ∆∗  0,

breaking equilibrium (because the planner would now like to play ∗1). It follows that in any informa-

tive equilibrium, (1) is solved by at least one ∆∗  0. The value of the equilibrium can therefore be

bounded above by

max
∆∈[01]

min
∈[01]

(∆; )

On this restricted domain,

(∆;∗ )


= (1−∆)(1− ∗1(∆)− (1− ∗)3(∆)) ≤ 12
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for any (∗ ), hence 

max∆∈[01]min∈[01] (∆; ) ≤ 12 by an envelope theorem. In contrast, a

pooling equilibrium (if it exists) has value (0;∗ ) = 2 (independent of ) with derivative 12. It

follows that if there exists a pooling equilibrium for some , then there also exists a pooling equilibrium

for any 0  . But inspection of algebra in step 4 reveals that ∆∗ = 0, thus the equilibrium is pooling,

at  = ∗ . Hence, there exists a pooling equilibrium for every  ≥ ∗ .

Step 6: Characterization of the pooling equilibrium.

A necessary condition for a pooling equilibrium is thatmax∆∈[−11] (∆;∗ ) = 2. As (0; ) =

2 for every , this requires a first-order condition to hold at ∆∗ = 0, thus

0(0;∗ ) = − (∗ 01(0) + (1− ∗) 02(0)) +
1− 

2
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The closed-form expressions for ∗ provided in the proposition follow upon substituting for  01(0) from

above and using
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This always leads to a positive expression because  01(0)   02(0) and
1−
2
≥  02(0) can be verified. 

∗

will equal 0 whenever 1−
2
=  02(0), that is whenever the truncation of 2 fails to bind; this is the case

iff  ≥ 12, confirming algebra from step 3. ∗ will equal 1 iff  01(0) =
1−
2
, which occurs iff  = ∗ .

∗  1 if   ∗ , in which case the pooling equilibrium does not exist, confirming algebra from step

4.

For the other scenarios, similar arguments lead to the following. (The result for hidden covariates

requires more substantial adaptation, but the changes are very similar to arguments presented in the

paper.)

Proposition 2 Consider the noncompliance scenario with unrestricted behavior of noncompliers of

example 1. Define the decision rule
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and the decision rule

∗1 = ∗∗1 + (1− ∗)∗5
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with  0 = max{ ≤  : is odd}.
Then proposition 1(i)-(ii) applies with ∗1 replaced by ∗1. In particular, proposition 1(i)-(ii)

applies unchanged if  ≤
³
2
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Proposition 3 Consider the noncompliance scenario and impose monotonicity as in example 2. De-

fine the decision rule
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and the decision rule

∗2 = ∗∗1 + (1− ∗)∗6

where
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Then proposition 1(i)-(ii) applies with ∗1 replaced by ∗1. In particular, proposition 1(i)-(ii)

applies unchanged if  ≤ ∗ .

Proposition 4 Consider the hidden covariate setting of example 4. Define the decision rule

∗ = ∗∗1 + (1− ∗)∗4

where
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Then proposition 1(i)-(ii) applies with ∗1 replaced by 
∗
 . In particular, proposition 1(i)-(ii) applies

unchanged if  ≤ ∗ .

4


