266  Theory of Superconductivity

The Hamiltonian operator in the second-quantization formalism is

given by
Ho= S (Ks|H, ks o + § D <l VIIRDC,* 0y Cusicry (A-29)
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where s and s’ label the spin of the particle.
The wave fields are defined as

d@) = D w(x)c,

k
and they satisfy the anticommutation equations
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Note that in (A-29) the order of the destruction operators with
regard to the matrix-element indices is the inverse of that of the
creation operators. The v-body operator of Eq. (A-24) is
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The ordering is not entirely arbitrary because of sign changes
arising from anticommutation of fermion operators; that of
(A-29), (A-24"), (A-24), and (A-22) gives the correct sign for either
fermion or boson operators.
If one is dealing with particles of nonzero spin, the co-

ordinate x represents both space and spin variables, as does the
variable k. Integrals over x represent integrals over space and

sums over spin variables.
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1. INTRODUCTION
It gives me great pleasure to have the opportunity to join my colleagues John

Bardeen and Leon Cooper in discussing with you the theory of superconduct-
ivity. Since the discovery of superconductivity by H. Kamerlingh Onnes in
1911, an enormous effort has been devoted by a spectrum of outstanding scien-
tists to understanding this phenomenon. As in most developments in our branch
of science, the accomplishments honored by this Nobel prize were made
possible by a large number of developments preceding-them. A general under-
standing of these developments is important as a backdrop Tor-our own contri-
bution.

On December 11, 1913, Kamerlingh Onnes discussed in his Nobel lecture (1)
his striking discovery that on cooling mercury to near the absolute zero of tem-
perature, the electrical resistance became vanishingly small, but this dis-
appearance ‘‘did not take place gradually but abruptly.” His Fig. 17 is re-
produced as Fig. 1. He said, “Thus, mercury at 4.2 K has entered a new state
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which owing to its particular electrical properties can be called the state of
superconductivity.” He found this state could be destroyed by applying a
sufficiently strong magnetic field, now called the critical field H,. In April —
June, 1914, Onnes discovered that a current, once induced in a closed loop of
superconducting wire, persists for long periods without decay, as he later graphi-
cally demonstrated by carrying a loop of superconducting wire containing a
persistent current from Leiden to Cambridge.

In 1933, W. Meissner and R. Ochsenfeld (2) discovered that a superconductor
is a perfect diamagnet as well as a perfect conductor. The magnetic field van-
ishes in the interior of a bulk specimen, even when cooled down below the
transition temperature in the presence of a magnetic field. The diamagnetic
currents which flow in a thin penetration layer near the surface of a simply
connected body to shield the interior from an externally applied field are stable
rather than metastable. On the other hand, persistent currents flowing in a
multiply connected body, e.g., a loop, are metastable.

An important advance in the understanding of superconductivity occurred
in 1934, when C. J. Gorter and H. B. G. Casimir (3) advanced a two fluid
model to account for the observed second order phase transition at T, and
other thermodynamic properties. They proposed that the total density of
electrons p could be divided into two components

0 = @sten ' M
where a fraction gs/gx of the electrons can be viewed as being condensed into a
“superfluid,” which is primarily responsible for the remarkable properties of
superconductors, while the remaining electrons form an interpenetrating
fluid of “normal” electrons. The fraction ps/ps grows steadily from zero at T,
to unity at T == 0, where “all of the electrons’ are in the superfluid condensate.
A second important theoretical advance came in the following year, when
Fritz and Hans London set down their phenomenological theory of the electro-
magnetic properties of superconductors, in which the diamagnetic rather than
electric aspects are assumed to be basic. They proposed that the electrical
current density j; carried by the superfluid is related to the magnetic vector
potential A at each point in space by
i La 2
Jg= — 1 2)
where A is a constant dependent on-the material in question, which for a free
electron gas model is given by A = m[pse?, m and e being the electronic mass
and charge, respectively. A is to be chosen such that 7 - A = 0 to ensure cur-
rent conservation. From (2) it follows that a magnetic field is excluded from a
superconductor except within a distance

A= [Ac*|an

which is of order 10~ ¢m in typical superconductors for 7 well below T..
Observed values of 4 are generally several times the London value.
In the same year (1935) Fritz London (4) suggested how the diamagnetic
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property (2) might follow from quantum mechanics, if there was a “rigidity”
or stiffness of the wavefunction p of the superconducting state such that yp was
essentially unchanged by the presence of an externally applied magnetic field.
This concept is basic to much of the theoretical development since that time,
in that it sets the stage for the gap in the excitation spectrum of a supercon-
ductor which separates the energy of superfluid electrons from the energy of
electrons in the normal fluid. As Leon Cooper will discuss, this gap plays a
central role in the properties of superconductors.

In his book published in 1950, F. London extended his theoretical conjec-
tures by suggesting that a superconductor is a “‘quantum structure on a macro-
scopic scale [which is a] kind of solidification or condensation of the average
momentum distribution” of the electrons. This momentum space condensation
locks the average momentum of each electron to a common value which ex-
tends over appreciable distance in space. A specific type of condensation in
momentum space is central to the work Bardeen, Cooper and I did together.
It is a great tribute to the insight of the early workers in this field that many
of the important general concepts were correctly conceived before the micro-

- scopic theory was developed. Their insight was of\s%nt aid in our own

work.
The phenomenological London theory was extended in 1950 by Ginzburg

‘and. Landau (5) to include a spatial variation of gs. They suggested that

gsfo be written in terms of a phenomenological condensate wavefunction y(r)
as ps(r)fo = Iy)(r)lz and that the free energy difference 4F between the
superconducting and normal states at temperature T be given by

o 5T 1.
Ap_f{z_; e ]dr 3)

where ¢, m, a and b are phenomenological constants, with a(T;) = 0.

They applied this approach to the calculation of boundary energies between
normal and superconducting phases and to other problems.

As John Bardeen will discuss, a significant step in understanding which forces
cause the condensation into the superfluid came with the experimental discov-
eryofthe isotope effect by E. Maxwell and, independently, by Reynolds, et al.
(6). Their work indicated that superconductivity arises from the interaction
of electrons with lattice vibrations, or phonons. Quite independently, Herbert
Frohlich (7) developed a theory based on electron-phonon interactions which
yielded the isotope effect but failed to predict other superconducting properties.

(7 +540)) p 0 —aDpol+ 2w

" A somewhat similar approach by Bardeen (8) stimulated by the isotope effect

experiments also ran into difficulties. N. Bohr, W. Heisenberg and other
distinguished theorists had continuing interest in the general problem, but met
with similar difficulties.

An important concept was introduced by A. B. Pippard (9) in 1953. On the
basis of a broad range of experimental facts he concluded that a coherence
length ¢ is associated with the superconducting state such that a perturbation
of the superconductor at a point necessarily influences the superfluid within a
distance £ of that point. For pure metals, § ~ 10~ cm. for T < T,. He gener-
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alized the London equation (3) to a non-local form and accounted for the
fact that the experimental value of the penetration depth is several times
larger than the London -value. Subsequently, Bardeen (10) showed that
Pippard’s non-local relation would likely follow from an energy gap model.
A major problem in constructing a first principles theory was the fact that
the physically important condensation energy AF amounts typically to only
10-¢ electron volts (e.V.) per electron, while the uncertainty in calculating
the total energy of the electron-phonon system in even the normal state
amounted to of order 1 e.V. per electron. Clearly, one had to isolate those
correlations peculiar to the superconducting phase and treat them accurately,
the remaining large effects presumably being the same in the two phases and
therefore cancelling. Landau’s theory of a Fermi liquid (11), developed to
account for the properties of liquid He?, formed a good starting point for such a
scheme. Landau argued that as long as the interactions between the particles
(He® atoms in his case, electrons in our case) do not lead to discontinuous
changes in the microscopic properties of the system, a *‘quasi-particle” de-
scription of the low energy excitations is legitimate; that is, excitations of the
fully interacting normal phase are in one-to-one correspondence with the
excitations of a non-interacting fermi gas. The effective mass m and the Fermi
velocity vp of the quasi-particles differ from their free electron values, but aside
from a weak decay rate which vanishes for states at the Fermi surface there is
no essential change. It is the residual interaction between the quasi-particles
which is responsible for the special correlations characterizing superconductivi-
ty. The ground state wavefunction of the superconductor , is then represented
by a particular superposition of these normal state configurations, @,
A clue to the nature of the states @, entering strongly in o is given by com-
bining Pippard’s coherence length & with Heisenberg’s uncertainty principle
dp ~ K& ~ 10~F 4)
where pp is the Fermi momentum. Thus, ¥, is made up of states with quasi-
particles (electrons) being excited above the normal ground state by a
momentum of order /p. Since electrons can only be excited to states which are
initially empty, it is plausible that only electronic states within 2 momentum
104 pr of the Fermi surface are involved significantly in the condensation,
i.e., about 10-% of the electrons are significantly affected. This view fits nicely
with the fact that the condensation energy is observed to be of order 10-4g-
kpT.. Thus, electrons within an energy ~ vpdp o= kT, of the Fermi surface
have their energies lowered by of order £T; in the condensation. In summary,
the problem was how to account for the phase transition in which a condensa-
tion of electrons occurs in momentum space for electrons very near the Fermi
surface. A proper theory should automatically account for the perfect conduc-
tivity and diamagnetism, as well as for the energy gap in the excitation
spectrum.

II. Tue Parine Concert

In 1955, stimulated by writing a review article on the status of the theory
of superconductivity, John Bardeen decided to renew the attack on the problem.
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He invited Leon Cooper, whose background was in elementary particle physics
and who was at that time working with C. N. Yangat the Institute for Advanced
Study to join in the effort starting in the fall of 1955. I had the good fortune
to be a graduate student of Bardeen at that time, and, having finished my
graduate preliminary work, I was delighted to accept an invitation to join them.
We focused on trying to understand how to construct a ground state ¥,
formed as a coherent superposition of normal state configurations @y,

Y, = DanPy (5)

such that the energy would be as low as possible. Since the energy is given in
terms of the Hamiltonian H by

Ey = (¥,, Hy,) = z an* an (Pn, HPy) \ (6)

we attempted to make E, minimum by restricting the coefficients a, so that only
states which gave negative off-diagonal matrix elements would enter (6). In
this case all terms would add in phase and E, would be low.

By studying the eigenvalue spectrum of a class of matrices with off-diagonal
elements all of one sign (negative), Cooper discovered that frequently a single
eigenvalue is split off from the bottom of the spectrum. He worked out the
problem of two electrons interacting via an attractive potential-V above a
quiescent Fermi sea, i.e., the electrons in the sea were not influenced by ¥ and
the extra pair was restricted to states within an energy fwp above the Fermi
surface, as illustrated in Fig. 2. As a consequence of the non-zero density of
quasi-particle states N(0) at the Fermi surface, he found the energy eigenvalue
spectrum for two electrons having zero total momentum had a bound state
split off from the continuum of scattering states, the binding energy being

™

: 2
Ep = hope OY4
if the matrix elements of the potential are constant equal to ¥ in the region of
interaction. This important result, published in 1956 (12), showed that, re-
gardless of how weak the residual interaction between quasi-particles is, if the
interaction is attractive the system is unstable with respect to the formation of
bound pairs of electrons. Further, if Ey is taken to be of order kgT¢, the un-
certainty principle shows the average separation between electrons in the bound
state is of order 10~ cm. '

While Cooper’s result was highly suggestive, a major problem arose. If]
as we discussed above, a fraction 104 of the electrons is significantly involved
in the condensation, the average spacing between these condensed electrons.
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is roughly 10~* cm. Therefore, within the volume occupied by the bound state
of a given pair, the centers of approximately (10—4/10-¢)* = 108 other pairs will
be found, on the average. Thus, rather than a picture of a dilute gas of strongly
bound pairs, quite the opposite picture is true. The pairs overlap so strongly
in space that the mechanism of condensation would appear to be destroyed
due to the numerous pair-pair collisions interrupting the binding process of
a given pair. : ‘

Returning to the variational approach, we noted that the matrix elements
(@, HDy) in (6) alternate randomly in sign as one randomly varies nand n’
over the normal state configurations. Clearly this cannot be corrected to obtain
a low value of E, by adjusting the sign of the ay’s since there are N* matrix
elements to be corrected with only N parameters a;. We noticed that if the
sum in (6) is restricted to include only configurations in which, if any quasi-
particle state, say k, s, is occupied (s = T or l is the spin index), its “mate”
state k, 5 is also occupied, then the matrix elements of H between such states
would have a unique sign and a coherent lowering of the energy would be
obtained. This correlated occupancy of pairs of states in momentum space is
consonant with London’s concept of a condensation in momentum.

In choosing the state £, s to be paired with a given state £, s, it is important
to note that in a perfect crystal lattice, the interaction between quasi-particles
conserves total (crystal) momentum. Thus, as a given pair of quasi-particles
interact, their center of mass momentum is conserved. To obtain the largest
number of non-zero matrix elements, and hence the lowest energy, one must
choose the total momentum of each pair to be the same, that is

k+k =g (8)

States with ¢ ¢ 0 represent states with net current flow. The lowest energy
state is for ¢ == 0, that is, the pairing is such that if any state k[ is accupied in
an admissible ®n, so is—k| occupied. The choice of || spin pairing is not
restrictive since it encompasses triplet and singlet paired states.

Through this reasoning, the problem was reduced to finding the ground state
of the reduced Hamiltonian

Hyea=2 €k nks — 2, Vier birtby. 9)
r W

The first term in this equation gives the unperturbed energy of the quasi-

particles forming the pairs, while the second term is the pairing interaction '

in which a pair of quasi-particles in (kT, -—kl) scatter to (k"[, —k’f). The
operators by = cx; ck;, being a product of two fermion (quasi-particle)
creation operators, do not satisfy Bose statistics, since bg*3 = 0. This point is
essential to the theory and leads to the energy gap being present not only for
dissociating a pair but also for making a pair move with a total momentum
different from the common momentum of the rest of the pairs. It is this feature
which enforces long range order in the superfluid over macroscopic distances.

I11. Tue GrounD STATE

In constructing the ground state wavefunction, it seemed clear that the average
occupancy of a pair state (kT, —kl) should be unity for k far below the Fermi
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surface and 0 for k far above it, the fall off occurring symmetrically about kg
over a range of momenta of order

1
Ak~~~ 104 cm™,
3

One could not use a trial ¥, as one in which each pair state is definitely oc-
cupied or definitely empty since the pairs could not scatter and lower the
energy in this case. Rather there had to be an amplitude, say vy, that (kI,
—k|) is occupied in ¥, and consequently an amplitude uy = '/f:—;;:' that the
pair state is empty. After we had made a number of unsuccessful attempts
to construct a wavefunction sufficiently simple to allow calculations to be
carried out, it occurred to me that since an enormous number (~ 10%%) of pair
states (k'], —k'l) are involved in scattering into and out of a given pair state
(k], —k|), the “‘instantaneous” occupancy of this pair state should be essen-
tially uncorrelated with the occupancy of the other pair states at that “‘instant”.
Rather, only the average occupancies of these pair states are related.

On this basis, I wrote down the trial ground state as a product of operators
—one for each pair state—acting on the vacuum (state of no electrons),

¥, = (ux+ovsbr) [0>, (10)
k

where uy = J T— sz, Since the pair creation operators bx* commute for different
k's, it is clear that ¥, represents uncorrelated occupancy of the various pair
states. I recall being quite concerned at the time that ¥; was an admixture of
states with different numbers of electrons, a wholly new concept to me, and as
I later learned to others as well. Since by varying zx the mean number of
electrons varied, I used a Lagrange multiplier # (the chemical potential) to
make sure that the mean number of electrons (Nop) represented by ¥, was the
desired number . Thus by minimizing

Ey—pN = (gym [Hred"—/lNop]gjo)

with respect to g, I found that vg was given by

Ep—pt)
uﬁ:%[pLE"-] (11)
where
Ei = [(ee—p)+ a7 : (12)
and the parameter 4 satisfied what is now called the energy gap equation:
Ap
Adg = —--ZVk'};E-E—‘; (13)
From this expression, it followed that for the simple model
Vo — {V, IEk——,u! <rwpand |ev—p| < hwp
0, otherwise
A=k wpe — _L (14)
NOyW
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and the condensation energy at zero temperature is
AF = 3N(0)4? (15)

The idea occurred to me while I was in New York at the end of January,
1957, and I returned to Urbana a few days later where John Bardeen quickly
recognized what he believed to be the essential validity of the scheme, much to
my pleasure and amazement. Leon Cooper will pick up the story from here to
describe our excitement in the weeks that followed, and our pleasure in un-
folding the properties of the excited states.

IV. QuanTuM PHENOMENA ON A MACROSCOPIC SCALE

Superconductors are remarkable in that they exhibit quantum effects on a
broad range of scales. The persistence of current flow in a loop of wire many
meters in diameter illustrates that the pairing condensation makes the super-
fluid wavefunction coherent over macroscopic distances. On the other hand,
the absorption of short wavelength sound and light by a superconductor is
sharply reduced from the normal state value, as Leon Cooper will discuss.
I will concentrate on the large scale quantum effects here.

The stability of persistent currents is best understood by considering a cir-
cular loop of superconducting wire as shown in Fig. 3. For an ideal small
diameter wire, one would use the eigenstates efm8, (m = 0,4-1,4-2, .. .), of the
angular momentum Lz about the symmetry axis to form the pairing. In the
ground state no net current flows and one pairs mT with —ml, instead of k'{
with —k| as in a bulk superconductor. In both cases, the paired states are
time reversed conjugates, a general feature of the ground state. In a current
carrying state, one pairs (m+v)T with (-_—m—i—v)l, (v =0,+1,42 ...}, so
that the total angular momentum of each pair is identical, 24 v. It is this com-
monality of the center of mass angular momentum of each pair which preserves
the condensation energy and long range order even in states with current flow.
Another set of flow states which interweave with these states is formed by
pairing (m+»)] with (—m+v+1)|, (»=0,£1,42 ...), with the pair
angular momentum being (2v-+1)k The totality of states forms a set with all
integer multiples n of k for allowed total angular momentum of pairs. Thus,
even though the pairs greatly overlap in space, the system exhibits quantiza-
tion effects as if the pairs were well defined.

There are two important consequences of the above discussion. First, the
fact that the coherent condensate continues to exist in flow states shows that
to scatter a pair out of the (rotating) condensate requires an increase of energy.
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Crudely speaking, slowing down a given pair requires it ot give up its binding
energy and hence this process will occur only as a fluctuation. These fluctua-
tions average out to zero. The only way in which the flow can stop is if all pairs
simultaneously change their pairing condition from, say, ¥ to y—1. In this
process the system must fluctate to the normal state, at leastin a section of the
wire, in order to change the pairing. This requires an energy of order the
condensation energy AF. A thermal fluctuation of this size is an exceedingly
rare event and therefore the current persists.

The second striking consequence of the pair angular momentum quantization
is that the magnetic flux @ trapped within the loop is also quantized,

h
¢ﬂ=n.§f (n=0,41,42...). (16)
€

This result follows from the fact that if the wire diameter d is large compared
to the penetration depth 4, the electric current in the center of the wire is
essentially zero, so that the canonical angular momentum of a pair is

2e
Lpalr=‘c—’m!l’x‘4 (17)

where ryair is the center of mass coordinate of a pair and 4 is the magnetic
vector potential. If one integrates Lpatr, around the loop along a path in the
center of the wire, the integral is nh, while the integral of the right hand side of

2
(l7)is—§¢.

A similar argument was given by F. London (4b) except that he considered
only states in which the superfluid flows as a whole without a change in its

-internal strucutre, i.e., states analogous to the (m-v) T, (-—-m-}-v)l set. He found

@z == n-hcle. The pairing (m—-}—v)'{, (m+v+l)1 cannot be obtained by adding
¥ to each state, yet this type of pairing gives an energy as low as the more
conventional flow states and these states enter experimentally on the same basis
as those considered by London. Experiments by Deaver and Fairbank (13),
and independently by Doll and Nibauer (14) confirmed the flux quantization
phenomenon and provided support for the pairing concept by showing that
2¢ rather than ¢ enters the flux quantum. Following these experiments a clear
discussion of flux quantization in the pairing scheme was given by Beyers and
Yang (15).

The idea that electron pairs were somehow important in superconductivity
has been considered for some time (16, 17). Since the superfluidity of liquid
Het is qualitatively accounted for by Bose condensation, and since pairs of
electrons behave in some respects as a boson, the idea is attractive. The
essential point is that while a dilute gas of tightly bound pairs of electrons might
behave like a Bose gas (18) this is not the case when the mean spacing between
pairs is very small compared to the size of'a given pair. In this case the inner
structure of the pair, i.e., the fact that it is made of fermions, is essential;
it is this which distinguishes the pairing condensation, with its energy gap for
single pair translation as well as dissociation, from the spectrum of a Bose con-
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densate, in which the low energy exictations are Bose-like rather than Fermi-
like as occurs in acutal superconductors. As London emphasized, the con-
densation is an ordering in occupying momentum space, and not a space-like
condensation of clusters which then undergo Bose condensation.

In 1960, Ivar Giaever (19) carried out pioneering experiments in which elec-
trons in one superconductor (S,) tunneled through a thin oxide layer (~ 20—
30 A) to a second superconductor (S,) as shown in Fig. 4. Giaever’s experi-
ments were dramatic evidence of the energy gap for quasi-particle excitations.
Subsequently, Brian Josephson made a highly significant contribution by
showing theoretically that a superfluid current could flow between S, and S,
with zero applied bias. Thus, the superfluid wavefunction is coherent not only
in S, and 8, separately, but throughout the entire system, §,—0—S8,, under
suitable circumstances. While the condensate amplitude is small in the oxide,
it is sufficient to lock the phases of S, and 8, together, as has been discussed in
detail by Josephson (20) and by P. W. Anderson (21).

To understand the meaning of phase in this context, it is useful to go back
to the ground state wavefunction ¥, (10). Suppose we write the parameter iz
as lvkl exp ip and choose ux to be real. If we expand out the k-product in ¥,
we note that the terms containing J pairs will have a phase factor exp (i Mp),
that is, each occupied pair state contributes a phase ¢ to . Let this wavefunc-
tion, say ¥, represent S,, and have phase @,. Similarly, let W,(? represent S,
and have phase angle @,. If we write the state of the combined system as a
product

Y0 = P,0 W,e _ (18)

then by expanding out the double product we see that the phase of that part of
Y, which has N, pdirs in S, and N, pairs in S, is NV, ¢, +MNg,. For a truly
isolated system, 2(N,+N;) = 2N is a fixed number of electrons; however W,
and N, are not separately fixed and, as Josephson showed, the energy of the
combined system is minimizéd when @, = @, due to tunneling of electrons
between the superconductors. Furthermore, if ¢; = @,, a current flows between
S;and S,
J =Jusin(g1—@s) (19)
If @,—@, == ¢ is constant in time, a constant current flows with no voltage
applied across the junction. If a bias voltage is V applied between S, and 8,,
then, according to quantumn mechanics, the phase changes as
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d
.2.‘!:_9’ (20)
h dt
Hence a constant voltage applied across such a junction produces an

alternating current of frequency

v
y = -2-‘;— — 483 THz/V. @1

These effects predicted by Josephson were observed experimentally in a
series of beautiful experiments (22) by many scientists, which I cannot discuss
in detail here for lack of time. I would mention, as an example, the work of
Langenberg and his collaborators (23) at the University of Pennsylvania on
the precision determination of the fundamental constant e/k using the fre-
quency-voltage relation obeyed by the alternating Josephson supercurrent.
These experiments have decreased the uncertainty in our experimental knowl-
edge of this constant by several orders of magnitude and provide, in combina-
tion with other experiments, the most accurate available value of the Sommerfeld
fine structure constant. They have resulted in the resolution of several dis-
crepancies between theory and experiment in quantum electrodynamics and
in the development of an *“‘atomic’ voltage standard which is now being used
by the United States National Bureau of-Standards to maintain the U.S. legal
volt.

V. CoNcLUsION

 As T have attempted to sketch, the development of the theory of superconduct-

ivity was truly a collaborative effort, involving not only John Bardeen, Leon
Cooper and myself, but also a host of outstanding scientists working over a
périod of half a century. As my colleagues will discuss, the theory opened up
the field for many exciting new developments, both scientific and technological,
many of which no doubt lie in the future. I feel highly honored to have played
a role in this work and I deeply appreciate the honor you have bestowed on me
in awarding us the Nobel prize.
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MICROSCOPIC QUANTUM INTERFERENCE
EFFECTS IN THE THEORY OF
SUPERCONDUCTIVITY

Nobel Lecture, December 11, 1972

by

Leon N Coorer

Physics Department, Brown University, Providence, Rhode Island

1t is an honor and a pleasure to speak to you today about the theory of super-
conductivity. In a short lecture one can no more than touch on the long history
of experimental and theoretical work on this subject before 1957. Nor can one
hope to give an adequate account of how our understanding of superconductivi-
ty has evolved since that time. The theory (1) we presented in 1957, applied
to uniform materials in the weak coupling limit so defining an ideal supercon-
ductor, has been extended in almost every imaginable direction. To these
developments so many authors have contributed (2} that we can make no
pretense of doing them justice. I will confine myself here to an outline of some
of the main features of our 1957 theory, an indication of directions taken since
and a discussion of quantum interference efects due to the singlet-spin pairing
in superconductors which might be considered the microscopic analogue of the
effects discussed by Professor Schrieffer.

NormarL METAL

Although attempts to construct an electron theory of electrical conductivity
date from the time of Drude and Lorentz, an understanding of normal metal
conduction electrons in modern terms awaited the development of the quantum
theory. Soon thereafter Sommerfeld and Bloch introduced what has evolved
into the present description of the electron fluid. (3) There the conduction
electrons of the normal metal are described by single particle wave functions.
In the periodic potential produced by the fixed lattice and the conduction
electrons themselves, according to Bloch’s theorem, these are modulated
plane waves:

Oy(r) = ug (r) e*",

where uk(r) is a two component spinor with the lattice periodicity. We use
K to designate simultaneously the wave vector k, and the spinstateg: K=k, T ;

—K = —k, | . The single particle Bloch functions satisfy a Schrédinger equa-
tion

ﬁl
[ - 2‘mV2+VD(r)] Oy = Exly

where Vy(r) is the periodic potential and in general might be a linear operator
to include exchange terms.

The Pauli exclusion principle requires that the many electron wave function
be antisymmetric in all of its coordinates. As a result no two electrons can be
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Fig. 1. Fig. 2.

The normal ground state wavefunction, An excitation of the normal system.
Do, is a filled Fermi sphere for both spin

directions. :

in the same single particle Bloch state. The energy of the entire system is

2N

W=2XE¢

pe]
where £ is the Bloch energy of the it single electron state. The ground state
of the system is obtained when the lowest N Bloch states of each spin are
occupied by single electrons; this can be pictured in momentum space as the
filling in of a Fermi sphere, Fig. 1. In the ground-state wave function there is
no correlation between electrons of opposite spin and only a statistical correla-
tion (through the general anti-symmetry requirement on the total wave func-
tion) of electrons of the same spin. '

Single particle excitations are given by wave functions identical to the ground
state except that one electron states k; < kr are replaced by others &y < kp.
This may be pictured in momentum space as opening vacancies below the
Fermi surface and placing excited electrons above, Fig. 2. The energy difference
between the ground state and the excited state with the particle excitation &
and the hole excitation k¢ is

&j—&y = E—Ep— (E1—EF) = &5—&1 = Ie;l+l£¢l
where we define ¢ as the energy measured relative to the Fermi energy
& = E—Ep.

‘When Coulomb, lattice-electron and other interactions, which have been
omitted in constructing the independent particle Bloch model are taken into
account, various modifications which have been discussed by Professor Schrief-
fer are introduced into both the ground state wave function and the excitations.
These may be summarized as follows: The normal metal is described by a
ground state @, and by an excitation spectrum which, in addition to the
various collective excitations, consists of quasi-fermions which satisfy the usual
anticommutation relations. It is defined by the sharpness of the Fermi surface,
the finite density of excitations, and the continuous decline of the single particle
excitation energy to zero as the Fermi surface is approached. :
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ErecTrRoN CORRELATIONS THAT PRODUCE SUPERCONDUCTIVITY

For a description of the superconducting phase we expect to include correla-
tions that are not present in the normal metal. Professor Schrieffer has discussed
the correlations introduced by an attractive electron-electron interaction and
Professor Bardeen will discuss the role of the electron-phonon interaction in
producing the electron-electron interaction which is responsible for supercon-
ductivity. It seems to be the case that any attractive interaction between the
fermionsin a many-fermion system can produce a superconducting-like state.
This is believed at present to be the case in nuclei, in the interior of neutron
stars and has possibly been observed (4) very recently in He®. We will therefore
develop the consequences of an attractive two-body interaction in a degenerate
many-fermion system without enquiring further about its source.

The fundamental qualitative difference between the superconducting and
normal ground state wave function is produced when the large degeneracy of
the single particle electron levels in the normal state is removed. If we visualize
the Hamiltonian matrix which results from an attractive two-body interaction
in the basis of normal metal configurations, we find in this enormous matrix,
sub-matrices in which all single-particle states except for one pair of electrons
remain unchanged. These two electrons can scatter via the electron-electron
interaction to all states of the same total momentum. We may envisage the
pair wending its way (so to speak) over all states unoccupied by other electrons.
[The electron-electron interaction in which we are interested is both weak
and slowly varying over the Fermi surface. This and the fact that the energy
involved in the transition into the superconducting state is small leads us to
guess that only single particle excitations in a small shell near the Fermi
surface play a role. It turns out, further, that due to exchange terms in the
electron-electron matrix element, the effective interaction in metals between
electrons of singlet spin is much stronger than that between electrons of triplet
spin—thus our preoccupation with singlet spin correlations near the Fermi
surface.] Since every such state is connected to every other, if the interaction
is attractive and does not vary rapidly, we are presented with submatrices of
the entire Hamiltonian of the form shown in Fig. 3. For purposes of illustration
we have set all off diagonal matrix elements equal to the constant—V and
the diagonal terms equal to zero (the single particle excitation energy at the
Fermi surface) as though all the initial electron levels were completely degener-
ate. Needless to say, these simplifications are not essential to the qualitative
result.

Diagonalizing this matrix results in an energy level structure with M—1
levels raised in energy to E = -+V while one level (which is a superposition
of all of the original levels and quite different in character) is lowered in energy
to

E = —(M—1)V.

Since M, the number of unoccupied levels, is proportional to the volume
of the container while V, the scattering matrix element, is proportional to
Ijvolume, the product is independent of the volume. Thus the removal of .
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the degeneracy produces a single level separated from the others by a volume
independent energy gap.

To incorporate this into a solution of the full Hamiltonian, one must devise

a technique by which all of the electrons pairs can scatter while obeying the
exclusion principle. The wave function which accomplishes this has been dis-
cussed by Professor Schrieffer. Each pair gains an energy due to the removal of
the degeneracy as above and one obtains the maximum correlation of the entire
wave function if the pairs all have the same total momentum. This gives a
coherence to the wave function in which for*a combination of dynamical and
statistical reasons there is a strong preference for momentum zero, singlet spin
correlations, while for statistical reasons alone there is an equally strong
preference that all of the correlations have the same total momentum.

In what follows I shall present an outline of our 1957 theory modified by
introducing the quasi-particles of Bogoliubov and Valatin, (5) This leads to
a formulation which is generally applicable to a wide range of calculations
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Fig. 4. .

The ground state of the superconductor is
alinear superposition of statesin which pairs
(kt —k1) are occupied or unoccupied.

-h‘
u v
k 13

in 2 manner analogous to similar calculations in the theory of normal metals.
We limit the interactions to terms which scatter (and thus correlate) singlet

zero-momentum pairs. To do this, it is convenient to introduce the pair
operators:

by = c.gtg

by = cgex
and using these we extract from the full Hamiltonian the so-called reduced
Hamiltonian

Hrequeea = 2 2| bu b3 + Z 2ebyb, + 2 Vibiobs

k<ke k>kp ki’

where V., is the scattering matnix element between the pair states k and &',

GRrOUND STATE
As Professor Schrieffer has explained, the ground state of the superconductor

isalinear superposition of pair statesin which the pairs (k T, —k { ) are occupied
or unoccupied as indicated in Fig. 4. It can be decomposed into two disjoint
vectors—one in which the pair state k is occupied, @, and one in whichitis
unoccupied, @2
Yo = "k@m + U4

The probability amplitude that the pair state k is (is not) occupied in the
ground state is then u,(u,). Normalization requires that lul“+|v|2 = 1. The
phase of the ground state wave function may be chosen so that with no loss o
generality u, is real. We can then write

u = (l—h)r2
i = hi'2 &®
where
0kl !

A further decomposition of the ground state wave function of the supercon-
ductor in which the pair states k and k' are either occupied or unoccupied
Fig. 5 is:

Yo == ”b“y@(k),(m + "A”H@(s), v+ Ukuk’@k, ey + vhvk’@ln,k .

This is a Hartree-like approximation in the probability amplitudes for the

occupation of pair states. It can be shown that for a fermion system the wave
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A decomposition of the ground state of the superconductor into states in which the pair
states k and k' are either occupidd or unoccupied.

function cannot have this property unless there are a variable number of
particles. To terms of order 1/N, however, this decomposition is possible for
a fixed number of particles; the errors introduced go to zero as the number of
particles become infinite. (6)

The correlation energy, We, is the expectation value of Hyeq for the state y,

We == (3o, Hreapo) = We [he].
Setting the variation of W, with respect to & and @ equal to zero in order to
minimize the energy gives
h =12 (1—¢/E)
E = (8’—{-14]2)1’2

where
4= |A|ei‘"
satisfies the integral equation
4k
A(k)y = —1]2 % V,‘,‘.-—-<—,-Z.
v o E(K)

If a non-zero solution of this integral equation exists, W, << 0 and the
“normal” Fermi sea is unstable under the formation of correlated pairs.

In the wave function that results there are strong correlations between pairs
of electrons with opposite spin and zero total momentum. These correlations
are built from normal excitations near the Fermi surface and extend over spatial
distances typically of the order of 10~* cm. They can be constructed due to the
large wave numbers available because of the exclusion principle. Thus with
a small additional expenditure of kinetic energy there can be a greater gain
in thé potential energy term. Professor Schrieffer has discussed some of the
properties of this state and the condensation energy associated with it,

SINGLE-PARTICLE EXGITATIONS
In considering the excited states of the superconductor it is useful, as for the
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normal metal, to make a distinction between single-particle and collective
excitations; it is the single-particle excitation spectrum whose alteration is
responsible for superfluid properties. For the superconductor excited (quasi-
particle) states can be defined in one-to-one correspondence with the excita-
tions of the normal metal. One finds, for example, that the expectation value
of Hyeq for the excitation Fig. 6 is given by

E, = /Ei -+ IAF.

In contrast to the normal sysﬁfdﬁhe superconductor even as ¢ goes to
zero E remains larger than zero, its lowest possible value being E = IA‘
One can therefore produce single particle excitations from the superconducting
ground state only with the expenditure of a small but finite amount of energy.
This is called the energy gap; its existence severely inhibits single particle

" processes and is in general responsible for the superfluid behavior of the electron

gas. [In a gapless superconductor it is the finite value of 4(r), the order para-
meter, rather than the energy gap as such that becomes responsible for the
superfluid properties.] In the ideal superconductor, the energy gap appears
because not a single pair can be broken nor can a single element of phase
space be removed without a finite expenditure of energy. If a single pair is
broken, one loses its correlation energy; if one removes an element of phase space
from the system, the number of possible transitions of all the pairs is reduced
resulting in both cases in an increase in the energy which does not go to zero
as the volume of the system increases.

The ground state of the superconductor and the excitation spectrum de-
scribed above can conveniently be treated by introducing a linear combination
of ¢* and ¢, the creation and annihilation operators of normal fermions. This
is the transformation of Bogoliubov and Valatin (5):

7’;0 = ”kc;("":c-x

)’;1 = ”;‘x‘!’"hC:x
It follows that

Viio =0
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so that the y,; play the role of annihilation operators, while the y;, create
excitations

Vii - -+ Vo Yo = Viir - - - mpr

The y operators satisfy Fermi anti-commutation relations so that with them
we obtain a complete orthonormal set of excitations in one-to-one correspon-
dence with the excitations of the normal metal.

We can sketch the following picture. In the ground state of the supercon-
ductor all the electrons are in singlet-pair correlated states of zero total
momentum. In an m electron excited state the excited electrons are in “quasi-
particle” states, very similar to the normal excitations and not strongly
correlated with any of the other electrons. In the background, so to speak, the
other electrons ‘are still correlated much as they were in the ground state.
The excited electrons behave in a manner similar to normal electrons; they
can be easily scattered or excited further. But the background electrons—
those which remain correlated —retain their special behavior; they are difficult
to scatter or to excite. .

Thus, one can identify two almost independent fluids. The correlated portion
of the wave function shows the resistance to change and the very small specific
heat characteristic of the superfluid, while the excitations behave very much
like normal electrons, displaying an almost normal specific heat and resistance.
When a steady electric field is applied to the metal, the superfluid electrons
short out the normal ones, but with higher frequency fields the resistive proper-
ties of the excited electrons can be observed. [7]

TuERMODYNAMIC PROPERTIES, THE IDEAL SUPERCONDUCTOR

‘We can obtain the thermodynamic properties of the superconductor using
the ground state and excitation spectrum just described. The free energy of
the system is given by

Fih, ‘p:f] = We(T)— 78,

where T is the absolute temperature and S is the entropy; f is the super-
conducting Fermi function which gives the probability of single-particle ex-
citations. The entropy of the system comes entirely from the excitations as
the correlated portion of the wave function is non-degenerate. The free energy
becomes a function of f(k) and h(k), where f(k) is the probability that the
state k is occupied by an excitation or a quasi-particle, and (k) is the relative
probability that the state k is occupied by a pair given that is not occupied by
a quasi-particle. Thus some states are occupied by quasi-particles and the
unoccupied phase space is available for the formation of the coherent back-
ground of the remaining electrons. Since a portion of phase space is occupied by
excitations at finite temperatures, making it unavailable for the transitions
of bound pairs, the correlation energy is a function of the temperature, We(7T).
As T increases, W¢(T) and at the same time 4 decrease until the critical tem-
perature is reached and the system reverts to the normal phase. .

Since the excitations of the superconductor are independent and in a one-
to-one correspondence with those of the normal metal, the entropy of an
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excited configuration is given by an expression identical with that for the
normal metal except that the Fermi function, f(k), refers to quasi-particle
excitations. The correlation energy atfinite temperature is given by an expres-
sion similar to that at T = 0 with the available phase space modified by the
occupation functions f(k). Setting the variation of F with respect to k, g, and
fequal to zero gives:

= 1/2 (1—¢[E)

E = Je* 4 [A[’

and
1
S
+ exp(E[ksT)

where

A= lA[ei"’

is now temperature-dependent and satisfies the fundamental integral equation
of the theory

= 12 2 Vip ——
4,(T) /2 o WE,,.(T) a 2%pT

The form of these equations is the same as that at T == 0 except that the
energy gap varies with the temperature. The equation for the energy gap can
be satisfied with non-zero values 6f4_only in a restricted temperature range.
The upper bound of this temperature Tange is defined as. T, the critical
temperature. For T < T, singlet spin zero momentum electrons are strongly
correlated, there is an energy gap associated with exciting electrons from the
correlated part of the wave function and E(k) is bounded below by ]A‘ In
this region the system has properties qualitatively different from the normal
metal.

In the region T > T¢, 4 = 0 and we have in every respect the normal solu-
tion. In particular f the distribution function for excitations, becomes just the
Fermi function for excited electrons ¥ > kg, and for holes £ < iy

Fm e

1+ exp(]e|/k3T)

If we make our simplifications of 1957, (defining in this way an ‘ideal’
superconductor)

Ver=—V e < liway

=0 otherwise

4(T) nh(E'(T)).

and replace the energy dependent density of states by its value at the Fermi
surface, V(0), the integral equation for 4 becomes

hwav ! ,
1= NO)V _f L tanh ( e+ ld‘z).
o Je+ 4] 2T
The solution of this equation, Fig. 7, gives 4(T) and with this f and A.
‘We can then calculate the free energy of the superconducting state and obtain
the thermodynamic properties of the system.
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Fig. 7. \
Variation of the energy gap with temperature for the ideal superconductor.

In particular one finds that at T (in the absence of a magnetic field) there
is a second-order transition (no latent heat: W, = 0 at T¢) and a discontinuity
in the specific heat. At very low temperatures the specific heat goes to zero
exponentially. For this ideal superconductor one also obtains a law of cor-:
responding states in which the ratio

T2
T2 —oamn,

L]
where
y = 2[37°N(0)kg®.
The experimental data scatter about the number 0.170. The ratio of 4
to kg7 is given as a universal constant
AlksTe = 1.75.
There are no arbitrary parameters in the idealized theory. In the region
of empirical interest all thermodynamic properties are determined by the quanti-
-ties y and fwgy eV @V, The first, 9, is found by observation of the normal
specific heat, while the second is found from the critical temperature, given by
kpTe = 1.14 hwguel INOV,
At the absolute zero
A = hwayfsinh (N.——((l))—V.)
Further, defining a weak coupling limit [N(0)V < 1] which is one region
of interest empirically, we obtain
A =~ 2hiwayel INOV,
The energy difference between the normal and superconducting states be-
comes (again in the weak coupling limit)
We— Wy = W, = —2N(0)(fimay)® e 2N OV,
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The dependence of the correlation energy on (fiway)? gives the isotope effect,
while the exponential factor reduces the correlation energy from the dimen-
sionally expected N(0)(fiwav)* to the much smaller observed value. This,
however, is more a demonstration that the isotope effect is consistent with our
model rather than a consequence of it, as will be discussed further by Professor
Bardeen.

The thermodynamic properties calculated for the ideal superconductor are
in qualitative agreement with experiment for weakly coupled superconductors.
Very detailed comparison between experiment and theory has been made by
many authors. A summary of the recent status may be found in reference (2).
When one considers that in the theory of the ideal superconductor the existence
of an actual metal is no more than hinted at (We have in fact done all the
calculations considering weakly interacting fermions in a container.) so that
in principle (with appropriate modifications) the calculations apply to neutron
stars as well as metals, we must regard detailed quantitative agreement as a
gift from above. We should be content if there is a single metal for which such
agreement exists. [Pure single crystals of tin or vanadium are possible candi-
dates.] .

To make comparison between theory and experiments on actual metals, a
plethora of detailed considerations must be made. Professor Bardeen will
discuss developments in the theory of the electron-phonon interaction and the
resulting dependence of the elcctror}hac{ron interaction and superconducting
properties on the phonon spectrum and the range of the Coulomb repulsion.
Crystal symmetry, Brillouin zone structure and the actual wave function (S,
P or Dstates) of the conduction electrons all play a role in determining real
metal behavior. There is a fundamental distinction between superconduc-
tors w ich always show a Meissner effect and those (type II) which allow mag-
netic field penetration in units of the flux quantum.

When one considers, in addition, specimens with impurities (magnetic and
otherwise) superimposed films, small samples, and so on, one obtains a variety
of situations, developed in the years since 1957 by many authors, whose rich-
ness and detail takes volumes to discuss. The theory of the ideal superconductor
has so far allowed the addition of those extensions and modifications necessary
to describe, in what must be considered remarkable detail, all of the experience
actually encountered.

Microscopic INTERFERENCE EfrecTs

In its interaction with external perturbations the superconductor displays
remarkable interference effects which result from the paired nature of the
wave function and are not at all present in similar normal metal interactions.
Neither would they be present in any ordinary two-fluid model. These “co-
herence effects” are in a sense manifestations of interference in spin and
momentum space on a rmicroscopic scale, analogous to the macroscopic
quantum effects due to interference in ordinary space which Professor Schrieffer
discussed. They depend on the behavior under time reversal of the perturbing
fields. (8) It is intriguing to speculate that if one could somehow amplify them
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Ultrasonic attenuation as a function of temperature across the superconducting transition
as measured by Morse and Bohm.

properly, the time reversal symmetry of a fundamental interaction might be
tested. Further, if helium 3 does in fact display a phase transition analogous to
the superconducting transition in metals as may be indicated by recent experi-
ments (4) and this is a spin triplet state, the coherences effects would be
greatly altered.

Near the transition temperature these coherence effects produce quite dra-
matic contrasts in the behavior of coefficients which measure interactions with
the conduction electrons. Historically, the comparison with theory of the be-
havior of the relaxation rate of nuclear spins (9) and the attenuation of longi-
tudinal ultrasonic waves in clean samples (10) as the temperature is decreased
through T, provided an early test of the detailed structure of the theory.

The attenuation of longitudinal acoustic waves due to their interaction
with the conduction electrons in a metal undergoes a very rapid drop (10a)
as the temperature drops below T.. Since the scattering of phonons from
“normal” electrons is responsible for most of the acoustic attenuation, a drop
was to be expected; but the rapidity of the decrease measured by Morse and
Bohm (10b) Fig. 8 was difficult to reconcile with estimates of the decrease in
the normal electron component of a two-fluid model.

The rate of relaxation of nuclear spins was measured by Hebel and Slichter

(92) in zero magnetic field in superconducting aluminum from 0.94 K to~

4.2 K just at the time of the development of our 1957 theory. Redfield and
Anderson (9b) confirmed and extended their results, The dominant relaxation
mechanism is provided by interaction with the conduction electrons so that
one would expect, on the basis of a two-fluid model, that this rate should
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decrease below the transition temperature due to the diminishing density of
“normal” electrons. The experimental results however show just the reverse.
The relaxation rate does not drop but increases by a factor of more than two
just below the transition temperature. Fig 13. This observed increase in the
nuclear spin relaxation rate and the very sharp drop in the acoustic attenuation
coefficient as the temperature is decreased through T, impose contradictory
requirements on a conventional two-fluid model.

Toillustrate how such effects come about in our theory, we consider the transi-
tion probability per unit time of a process involving electronic transitions from
the excited state k to the state k' with the emission to or absorption of energy from
the interacting field. What is to be calculated is the rate of transition between
an initial state ii > and a final state |f> with the absorpticn or emission of
the energy fwpe—y (a phonon for example in the interaction of sound waves
with the superconductor). All of this properly summed over final states and
averaged with statistical factors over initial states may be written:

2n

z Cxp(—W(/kBT)I <f| Hint li> ]' 6(Wj—' W{)
TR — uf
CET T T exp(— WijksT)

We focus our attention on the matrix element < f Ingli>. This typically
contains as one of its factors matrix elements between excited states of the
superconductor of the operator

B = X Byxtpiy
'S

where cy. and ¢ are the creation and annihilation operators for electrons in
the states K’ and K, and By.y is the matrix element between the states K’ and
K of the configuration space operator B(r)

Byx = < K'|B(r)|K>.

The operator B is the electronic part of the matrix element between the full
final and initial state

< flHw|i > = mp< f| B|i >.

In the normal system scattering from single-particle electron states K to K’
is independent of scattering from —K' to —K. But the superconducting states
are linear superpositions of (K,—K) .occupied and unoccupied. Because of this
states with excitations k] and k'] are connected not only by ¢}, but also
by ¢l 53 if the state [ f> contains the single-particle excitation ¥’ | while
the state Ii > contains k T,as a result of the superposition of occupied and
‘unoccupied pair states in the coherent part of the wave function, these are
connected not only by By ey but also by B_g_ g ¢- g6 g

For operators which do not flip spins we therefore write:

» .
.B =h)£ (BgxCxrtr + Bogxo € g6 g}
Many of the operators, B, we encounter (e.g., the electric current, or the

charge density operator) have a well-defined behavior under the operation
of time reversal so that

Byx =% B yx = Bpw
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The two states Ii> and <f] shown are connected by ‘z'I“l‘ with the amplitude upug.

Then B becomes
B =5’ B (";q"n + ‘:u”-xu)

where the upper (lower) sign results for operators even (odd) under time
reversal.

The matri;( element of B between the initial state, y ... 4, ..., and the
final state ... 4, ... contains contributions from c,',,tc,‘1 Fig. 9 and un-
expectedly from ¢, ¢.p., Fig. 10. As a result the matrix element squared
l <f l B l > [2 contains terms of the form

IBMIZ l("l:’uk + ”k'”;)lz,
where the sign is determined by the behavior of B under time reversal:
upper sign B even under time reversal
lower sign B odd under time reversal.

Applied to processes involving the emission or absorption of boson quanta
such as phonons or photons, the squared matrix element above is averaged
with the appropriate statistical factors over initial and summed over final
states; substracting emission from absorption probability per unit time, we
obtain typically
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The two states ii > and <f[ are also connected by c’”c_y‘ with the amplitude — vtk .

- i},%Z Il 2 |G F o]t (=) (B —Ev—hoons)

where f, is the occupation probability in the superconductor for the excitation
E} or E|. [In the expression above we have considered only quasiparticle or
quasi-hole ‘scattering processes (not including processes in which a pair of
excitations is created or annihilated from the coherent part of the wave
function) since fimy_y < 4, is the usual region of interest for the ultrasonic
attenuation and nuclear spin relaxation we shall contrast.]

For the ideal superconductor, there is isotropy around the Fermi surface

and symmetry between particles and holes; therefore sums of the form 2 can
k

be converted to integrals over the superconducting excitation energy, E:

© E
2 2N(0 == dE
k ¢ )Jd JE*—A43

where N(0)

E
== N(0)—is the density of excitations in the super- .
JE*—A 2 £

conductor, Fig. 11.
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Fig. 11.
1 1 Ratio of superconducting to normal den-
2 3 E/A ity of excitations as a function of E/4.

The appearance of this density of excitations is a surprise. Contrary to our
intuitive expectations, the onset of superconductivity seems initially to enhance
rather than diminish electronic transitions, as might be anticipated in a reason-
able two-fluid model. .

But the coherence factors l(u'ulF u’u"‘)l2 are even more surprising ; they behave
in such a way as to sometimes completely negate the effect of the increased
density of states. This can be seen using the expressions obtained above for u
and v for the ideal superconductor to obtain

’
(WuFov'v)? = l (l +§:—iz—lf)
2 EE'

In the integration over k and k' the £’ term vanishes. We thus define
(u'uFv'v)}; in usual limit where fiwy_y < 4, =~ ¢ and E ~ E', this be-
comes

1fe® ; '
(2—0?)) - ~f— operators even under time reversal

2

1 E
(w407 — :‘2-(14—2—) operators odd under time reversal.

a

For operators even under time reversal, therefore, the decrease of the co-
herence factors near ¢ = 0 just cancels the increase due to the density of states.
For the operators odd under time reversal the effect of the increase of the densi-
ty.of states is not cancelled and should be observed as an increase in the rate
of the corresponding process.

In general the interaction Hamiltonian for a field interacting with the super-
conductor (being basically an electromagnetic interaction) is invariant under
the operation of time reversal. However, the operator B might be the electric
current j(r) (for electromagnetic interactions) the electric charge density
e(r) (for the electron-phonon interaction) or the z component of the electron
spin operator, g; (for the nuclear spin relaxation interaction). Since under
time-reversal

J(ry t) = — j(r, —t) (electromagnetic interaction)

o(r, t}) = -+ o(r, —t) (electron-phonon interaction)

a:(t) = — az(—t) (nuclear spin relaxation interaction)
these show strikingly different interference effects.

294

1.0
oLy
oln
a8k
o TIN 335 MHz :
o TIN 54.0 MHz $
©.
asle * INDIUM ™A 28.5 MHz K
& INDIUM"B" 352 MHz }
o4
0_2._
|
o}
02
Fig. 12.

Comparison of observed ultrasonic attenuation with the iécal theory. The data are due to
Morse and Bohm.

Ultrasonic attenuation in the ideal pure superconductor for ¢/ > 1 (the

_product of the phonon wave number and the electron mean free path) depends

in a fundamental way on the absorption and emission of phonons. Since the
matrix elements have a very weak dependence on changes near the Fermi
surface in occupation of states other than k or k' that occur in the normal to
superconducting transition, calculations within the quasi-particle model can
be compared in a very direct manner with similar calculations for the normal
metal, as B, is the same in both states. The ratio of the attenuation in the
normal and superconducting states becomes:

s N 2_.p?)? Ezgf_(.@
-(-I:zo——fd dE(.ll——U)s(s) aE .

1 2
Since (u’-v’):—+§(§) , the coherence factors cancel the density of states
giving

2 _ of(a(m)) = ——

an A(T)Y
1+ exp (-;:;-—7-_—)

Morse and Bohm (10b) used this result to obtain a direct experimental
determination of the variation of 4 with 7. Comparison of their attenuation
data with the theoretical curve is shown in Figure 12.
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In contrast the relaxation of nuclear spins which have been aligned in a
magnetic field proceeds through their interaction with the magnetic moment
of the conduction electrons. In an isotropic superconductor this can be shown
to depend upon the z component of the electron spin operator

L *
Brg = B(og 160y —o4i6 00 y)
so that
Bgg = —B g -

This follows in general from the property of the spin operator under time
reversal

0'2([) = e Uz(——l).
The calculation of the nuclear spin relaxation rate proceeds in a manner

not too different from that for ultrasonic attenuation resulting finally in a

ratio of nuclear spin relaxation rates in superconducting and normal states
in the same sample:

Ry ® " [E\* df(E)
— I 2 2 — —_—
= 42de(u‘ +u),(£) E

But (#*-2%), does not go to zero at the lower limit so that the full effect of
the increase in density of states at E = 4 is felt. Taken literally, in fact, this
expression divexrges logarithmically at the lower limit due to the infinite density
of states. When the Zeeman energy difference between the spin up and spin
down states is included, the integral is no longer divergent but the integrand
is much too large. Hebel and Slichter, by putting in a broadening of levels
phenomenologically, could produce agreement hetween theory and experi-
ment. More recently Fibich (11) by including the effect of thermal phonons
has obtained the agreement between theory and experiment shown in Fig. 13.

1 ) 1 { 1 1 1 ¥ 1
30t Ry/R, ' .
2.0
1.0
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of 02 03 04 05 06 07 0.8 0.9 1.0
Fig. 13. :

Comparison of observed nuclear spin relaxation rate with theory. The circles represent
experimental data of Hebel and Slichter, the crosses data by Redfield and Anderson.
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Interference effects manifest themselves in a similar manner in the interac-
tion of electromagnetic radiation with the superconductor. Near T, the absorp-
tion is dominated by quasi-particle scattering matrix elements of the type we
have described. Near T = 0, the number of quasi-particle excitations goes
to zero and the matrix elements that contribute are those in which quasi-
particle pairs are created from y,. For absorption these latter occur only

“when #w > 24. For the linear response of the superconductor to a static

magnetic field, the interference occurs in such a manner that the paramagnetic
contribution goes to zero leaving the diamagnetic part which gives the Meiss-
ner effect.

The theory developed in 1957 and applied to the equilibrium properties
of uniform materials in the weak coupling region has been extended in numer-
ous directions by many authors. Professor Schrieffer has spoken of Josephson
junctions and macroscopic quantum interference effects; Professor Bardeen
will discuss the modifications of the theory when the electron-phonon inter-
actions are strong. The treatment of ultrasonic attenuation, generalized to
include situations in uniform superconductors in which gl < 1, gives a sur-
prisingly similar result to that above. (12) There have been extensive de-
velopments using Green’s function methods (13) appropriate for type II super-
conductors, materials with magnetic impurities and non-uniform materials or
boundary regions where the order parameter is a function of the spatial co-
ordinates. (14) With these methods formal problems of gauge invariance and/or
current conservation have been resolved in a very elegant manner. (15) In
addition, many calculations (16) of great complexity and detail for type II
superconductors have treated ultrasonic attenuationy nuclear spin relaxation
and other phenomena in the clean and dirty limits (few or large numbers of
impurities). The results cited above are modified in various ways. For example,
the average density of excitation levels is less sharply peaked at T¢ in a type 11
superconductor; the coherence effects also change somewhat in these altered
circumstances but nevertheless play an important role. Overall one can say
that the theory has been amenable to these generalizations and that agreement
with experiment is good.

It is now believed that the finite many-nucleon system that is the atomic
nucleus enters a correlated state analogous to that of a superconductor. (17)
Similar considerations have been applied to many-fermion systems as diverse
as neutron stars, (18) liquid He?, (19) and to elementary fermions. (20) In
addition the idea of spontaneously broken symmetry of a degenerate vacuum
has been applied widely in elementary particle theory and recently in the
theory of weak interactions. (21) What the electron-phonon interaction has
produced between electrons in metals may be produced by the van der Waals
interaction between atoms in He?, the nuclear interaction in nuclei and neutron
stars, and the fundamental interactions in elementary fermions. Whatever the
success of these attempts, for the theoretician the possible existence of this
correlated paired state must in the future be considered for any degenerate
many-fermion system where there is some kind of effective attraction between
fermions for transitions near the Fermi surface.
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In the past few weeks my colleagues and I have been asked many times:
“What are the practical uses of your theory?"’ Although even a summary in-
spection of the proceedings of conferences on superconductivity and its appli-
cations would give an immediate sense of the experimental, theoretical and
developmental work in this field as well as expectations, hopes and anticipa-
tions—from applications in heavy electrical machinery to measuring devices
of extraordinary sensitivity and new elements with very rapid switching speeds
for computers — I, personally, feel somewhat uneasy responding. The discovery
of the phenomena and the development of the theory is a vast work to which
many scientists have contributed. In addition there are numerous practical
uses of the phenomena for which theory rightly should not take credit. A
theory (though it may guide us in reaching them) does not produce the trea-
sures the world holds. And the treasures themselves occasionally dazzle our
attention; for we are not so wealthy that we may regard them as irrelevant.

But a theory is more. It is an ordering of experience that both makes ex-
perience meaningful and is a pleasure to regard in its own right. Henri Poin-
caré wrote (22):

Le savant doit ordonner; on fait la science
avec des faits comme une maison avec des
pierres; mais une accumulation de faits
n’est pas plus une science qu'un tas de
pierres n’est une maison.

One can build from ordinary stone a humble house or the finest chateau.
Either is constructed to enclose a space, to keep out the rain and the cold.
They differ in the ambition and resources of their builder and the art by which
he has achieved his end. A theory, built of ordinary materials, also may serve
many a humble function. But when we enter and regard the relations in the
space of ideas, we see columns of remarkable height and arches of daring
breadth. They vault the fine structure constant, from the magnetic moment
of the electron to the behavior of metallic junctions near the absolute zero;
they span the distance from materials at the lowest temperatures to those in
the interior of stars, from the properties of operators under time reversal to the
behavior of attenuation coefficients just beyond the transition temperature.

1 believe that I speak for my colleagues in theoretical science as well as
myself wheri I say that our ultimate, our warmest pleasure in the midst of one
of these incredible structures comes with the realization that what we have
made is not only useful but is indeed a beautiful way to enclose a space.
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1

InTRODUCTION

Qur present understanding of superconductivity has arisen from a close
interplay of theory and experiment. It would have been very difficult to have
arrived at the theory by purely deductive reasoning from the basic equations
of quantum mechanics. Even if someone had done so, no one would have be-
lieved that such remarkable properties would really occur in nature. But, as
you well know, that is not the way it happened, a great deal had been learned
about the experimental properties of superconductors and phenomenological
equations had been given to describe many aspects before the microscopic
theory was developed. Some of these have been discussed by Schrieffer and
by Cooper in their talks.

My first introduction to superconductivity came in the 1930’s and I greatly
profited from reading David Shoenberg’s little book on superconductivity, [1]
which gave an excellent summary of the experimental findings and of the
phenomenological theories that had been developed. At that time it was
known that superconductivity results from a phase change of the electronic
structure and the Meissner effect -showed that thermodynamics could be
applied successfully to the superconductive equilibrium state. The two fluid
Gorter—Casimir model was used to describe the thermal properties and the
London brothers had given their famous phenomenological theory of the
electrodynamic properties. Most impressive were Fritz London’s speculations,
given in 1935 at a meeting of the Royal Society in London, [2] that super-
conductivity is 2 quantum phenomenon on a macroscopic scale. He also gave
what may be the first indication of an energy gap when he stated that “the
electrons be coupled by some form of interaction in such a way that the
lowest state may be separated by a finite interval from the excited ones.”
He strongly urged that, based on the Meissner effect, the diamagnetic aspects
of superconductivity are the really basic property.

My first abortive attempt to construct a theory, [3] in 1940, was strongly

influenced by London’s ideas and the key idea was small energy gaps at the -

Fermi surface arising from small lattice displacements. However, this work
was interrupted by several years of wartime research, and then after the war
1 joined the group at the Bell Telephone Laboratories where my work turned
to semiconductors. It was not until 1950, as a result of the discovery of the
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isotope effect, that I again began to become interested in superconductivity,
and shortly after moved to the University of Illinois.

The year 1950 was notable in several respects for superconductivity theory.
The experimental discovery of the isotope effect [4, 5] and the independent
prediction of H. Frohlich [6] that superconductivity arises from interaction
between the electrons and phonons (the quanta of the lattice vibrations) gave
the first clear indication of the directions along which a microscopic theory
might be, sought. Also in the same year appeared the phenomenological
Ginzburg—Landau equations which give an excellent description of super-
conductivity near T¢ in terms of a complex order parameter, as mentioned
by Schrieffer in his talk. Finally, it was in 1950 that Fritz London’s book [7]
on superconductivity appeared. This book included very perceptive comments
about the nature of the microscopic theory that have turned out to be re-
markably accurate. He suggested that superconductivity requires “a kind of
solidification or condensation of the average momentum distribution.” He
also predicted the phenomenon of flux quantization, which was not observed
for another dozen years.

The field of superconductivity is a vast one with many ramifications. Even
in a series of three talks, it is possible to touch on only a few highlights. In
this talk, I thought that it might be interesting to trace the development of
the role of electron-phonon interactions in superconductivity from its begin-
nings in 1950 up to the present day, both before and after the development
of the microscopic theory in 1957. By concentrating on this one area, I hope
to give some impression of the great progress that has been made in depth
of understanding of the phenomena of superconductivity. Through develop-
ments by many people, [8] electron-phonon interactions have grown from a

-qualitative concept to such an extent that measurements pn superconductors

are now used to derive detailed quantitative information about the interaction
and its energy dependence. Further, for many of the simpler metals and alloys,
it is possible to derive the interaction from first principles and calculate the
transition temperature and other superconducting properties.

The theoretical methods used make use of the methods of quantum field
theory as adopted to the many-body problem, including Green's functions,
Feynman diagrams, Dyson equations and renormalization concepts. Following
Matsubara, temperature plays the role of an imaginary time. Even if you are
not familiar with diagrammatic methods, I hope that you will be able to
follow the physical arguments involved.

In 1950, diagrammatic methods were just being introduced into quantum
field theory to account for the interaction of electrons with the field of photons.
It was several years before they were developed with full power for application
to the quantum statistical mechanics of many interacting particles. Following
Matsubara, those prominent in the development of the theoretical methods
include Kubo, Martin and Schwinger, and particularly the Soviet physicists,
Migdal, Galitski, Abrikosov, Dzyaloshinski, and Gor’kov. The methods were
first introduced to superconductivity theory by Gor'kov [9] and a little later
in a somewhat different form by Kadanoff and Martin. [10] Problems of
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superconductivity have provided many applications for the powerful Green's
function methods of many-body theory and these applications have helped to
further develop the theory.

Diagrammatic methods were first applied to discuss electron-phonon
interactions in normal metals by Migdal [11] and his method was extended
to superconductors by Eliashberg. [12] A similar approach was given by
Nambu. [13] The theories are accurate to terms of order (m/M)!/2, where m
is the mass of the electron and A{ the mass of the ion, and so give quite accurate
quantitative accounts of the properties of both normal metals and super-
conductors.

We will first give a brief discussion of the electron-phonon interactions as
applied to superconductivity theory from 1950 to 1957, when the pairing theory
was introduced, then discuss the Migdal theory as applied to normal metals,
and finally discuss Eliashberg’s extension to superconductors and subsequent
developments. We will close by saying a few words about applications of the
pairing theory to systems other than those involving electron-phonon inter-
actions in metals.

2

DeveLopMENnTs FROM 1950—1957

The isotope effect was discovered in the spring of 1950 by Reynolds, Serin,
et al, [4] at Rutgers University and by E. Maxwell [5] at the U. S. National
Bureau of Standards. Both groups measured the transition temperatures of
separated mercury isotopes and found a positive result that could be interpreted
as TcM*'? ~ constant, where M is the isotopic mass. If the mass of the ions
is important, their motion and thus the lattice vibrations must be involved.

Independently, Frohlich, [6] who was then spending the spring term at
Purdue University, attempted to develop a theory of superconductivity based
on.the self-energy of the electrons in the field of phonons. He heard about
the isotope effect in mid-May, shortly before he submitted his paper for
publication and was delighted to find very strong experimental confirmation
of his ideas. He used a Hamiltonian, now called the Frohlich Hamiltonian,
in which interactions between electrons and phonons are included but Cou-
lomb interactions are omitted except as they can be included in the energies
of the individual electrons and phonons. Frohlich used a perturbation theory
approach and found an instability of the Fermi surface if the electron-phonon
interaction were sufficiently strong. -

‘When I heard about the isotope effect in early May in a telephone call from
Serin, I attempted to revive my earlier theory of energy gaps at the Fermi
surface, with the gaps now arising from dynamic interactions with the phonons
rather than from small static lattice displacements. [14] I used a variational
method rather than a perturbation approach but the theory was also based on
the electron self-energy in the field of phonons. While we were very hopeful
at the time, it soon was found that both theories had grave difficulties, not
easy to overcome. [13] It became evident that nearly all of the self-energy is
included in the normal state and is little changed in the transition. A theory
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involving a true many-body interaction between the electrons seemed to be
required to account for superconductivity. Schafroth [16] showed that starting
with the Frohlich Hamiltonian, one cannot derive the Meissner effect in any
order of perturbation theory. Migdal’s theory, [I1] supposedly correct to
terms of order (m/M)!/3, gave no gap or instability at the Fermi surface and
no indication of superconductivity.

Of course Coulomb interactions really are present. The effective direct
Coulomb interaction between electrons is shielded by the other electrons and
the electrons also shield the ions involved in the vibrational motion. Pines and
1 derived an effective electron-electron interaction starting from a Hamiltonian
in which phonon and Coulomb terms are included from the start. [17] Asis the
case for the Frohlich Hamiltonian, the matrix element for scattering of a pair
of electrons near the Fermi surface from exchange of virtual phonons is
negative (attractive) if the energy difference between the electron states in-
volved is less than the phonon energy. As discussed by Schrieffer, the attractive
nature of the interaction was a key factor in the development of the micro-
scopic theory. In addition to the phonon induced interaction, there is the
repulsive screened Coulomb interaction, and the criterion for superconductivity
is that the attractive phonon interaction dominate the Coulomb interaction
for states near the Fermi surface. [18]

During the early 1950’ there was increasing evidence for an energy gap at
the Fermi surface. [19] Also very important was Pippard’s proposed non-local
modification [20] of the London electrodynamics which introduced a new length
the coherence distance, &, into the theory. In 1955 I wrote areview article [17]
on the theory of superconductivity for the Handbuch der/Physik, which was
published in 1956. The central theme of the article was the energy gap, and
it was shown that Pippard’s version of the electrodynamids would likely foliow
from an energy gap model. Also included was a revie‘s|7 of electron-phonon
interactions. It was pointed out that the evidence suggested that all phonons
are involved in the transition, not just the long wave length phonons, and
that their frequencies are changed very little in the normal-superconducting
transition. Thus one should be able to use the effective interaction between
electrons as a basis for a true many-body theory of the superconducting state.
Schrieffer and Cooper described in their talks how we were eventually able
to accomplish this goal.

3

Green’s FuncTion MeTHOD FOR NorMaL METALS

By use of Green’s function methods, Migdal [11] derived a solution of Fréhlich’s
Hamiltonian, H = He1+Hpp+ Hel.pn, for normal metals valid for abritrarily
strong coupling and which involves errors only of order (m/M)!/2. The Green’s
functions are defined by thermal average of time ordered operators for the
electrons and phonons, respectively

G = —i<Typ(l)p*+(2)> (1a)
D= —i<TP()B+(2)> (1b) -
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Here y(r,t) is the wave field operator for electron quasi-particles and
@(r,t) for the phonons, the symbols 1 and 2 represent the space-time points
(r1t;) and (ry,t5) and the brackets represent thermal averages over an ensemble.

Fourier transforms of the Green’s functions for Hy = He+ Hpn for non-
interacting electrons and phonons are

i

ClP) = T "
1 1
Dy(Q) = [v,,-—wa(q) +i6 .—vn+wo(q)—i6}’ )

where P = (k,wy) and Q = (q,v5) are four vectors, &/(k) is the bare electron
quasiparticle energy referred to the Fermi surface, wo(g) the bare phonon
frequency and wy, and v, the Matsubara frequencies

wn = (2n+1)7iksT; vy = 2nmiksT (3)
for Fermi and Bose particles, respectively.

As a result of the electron-phonon interaction, Hey.pn, both electron and
phonon energies are renormalized. The renormalized propagators, G and D,
can be given by a sum over Feynman diagrams, each of which represents a
term in the perturbation expansion. We shall use light lines to represent the
bare propagators, G, and Do, heavy lines for the renormalized propagators,
G and D, straight lines for the electrons and curly lines for the phonons.

The electron-phonon interaction is described by the vertex

G(P+Q)

DiQ)
G(P)

which represents scattering of an electron or hole by emission or absorption
of a phonon or creation of an electron and hole by absorption of a phonon
by an electron in the Fermi sea. Migdal showed that renormalization of the
vertex represents only a small correction, of order (m/M)/2, a result in accord
with the Born-Oppenheimer adiabatic-approximation. If terms of this order
are neglected, the electron and phonon self-energy corrections are given by

the lowest order diagrams provided that fully renormalized propagators are

used.in these diagrams.
The electron self-energy Z(P) in the Dyson equation:

= + @
G(P) = Go(P)+Go(P)Z(P)G(P) 4)
is given by the diagram
£ @2@ ®)

VAN AL = WYY (6)
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is given by
G{P+Q)

-
G(P)
Since to order (m/M)'/* one can use an unrenormalized vertex function
@ = o, the Dyson equations form a closed system such that both X(P) and
7(Q) can be determined. The phonon self-energy, 7(Q), gives only asmall
renormalization of the phonon frequencies. As to the electrons, Migdal noted

that we are interested in states & very close to kp, so that to a close approxima-
tion Z(k,w) depends only on the frequency. For an isotropic system,
Zlh,w) = Zlke,w) = Z(w) (7

The renormalized eléctron quasi-particle energy, wg, is then given by a root
of _

£(k) = wi = eo(k)+2(wi) (8)

In the thermal Green’s function formalism, one may make an analytic
continuation from the imaginary frequencies, wg, to the real w axis to determine
(o).

Although Z{w) is small compared with the Fermi energy, £, it changes
rapidly with energy and so can affect the density of states at the Fermi surface
and thus the low temperature electronic specific heat. The mass renormal-
ization factor m*[m, at the Fermi surface may be expressed in terms of a par-
ameter i:

m*|m = Z(kp)= 1-+2 = (deo/dk)r/(de/dk)r 9)

In modern notation, the experession for 4 is

@ 2

3= [ do T (10)

w
where F(w) is the density of phonon states in energy and a*(w) is the square
of the electron-phonon coupling constant averaged over polarization directions
of the phonons. Note that 1 is always positive so that the Fermi surface is
stable if the lattice is stable. Values of A for various metals range from about

0.5 to 1.5. The parameter A corresponds roughly to the N(0)Vpnonon of the
BCS theory.

4 Nampu-EL1aASHBERG THEORY FOR SUPERCONDUCTORS
Migdal’s theory has important consequences that have been verified experi-
mentally for normal metals, but gave no clue as to the origin of supercon-
ductivity. Following the introduction of the BCS theory, Gor'kov showed
that pairing could be introduced through the anomalous Green’s function
F(P) =i < Ty,p, >, an
Nambu showed that both types of Green's functions can be conveniently
included with use of a spinor notation
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‘Py(r)’) .
y o= (12)
¥a(nt) '
where y, and p, are wave field operators for up and down spin electrons
and a matrix Green's function with components
Gop = —i<Ty ;> (13)

Thus Gy, and Gy, are the single particle Green’s functions for up and down
spin particles and G,, = G, = F(P) is the anomalous Green's function of
Gor'kov.

There are two self-energies, 2, and X, defined by the matrix

2z 2,
L= (14)
2 %

Eliashberg noted that one can describe superconductors to the same accuracy
as normal metals if one calculates the self-energies with the same diagrams that
Migdal used, but with Nambu matrix propagators in place of the usual
normal state Green’s functions. The matrix equation for G is

G = Got+GoZG (15)

The matrix equation for 5 yields a pair of coupled integral equations for X,
and Z2,. Again X and X, depend mainly on the frequency and are essentially
independent of the momentum variables. Following Nambu, [13] one may
define a renormalization factor Js(w) and a pair potential, 4(w), for isotropic
systems through the equations:

wls(w) = w-+2;(w) _ (16)
A(w) = Zy(w)[X(w). (17)

Both Z5 and 4 can be complex and include quasi-particle life-time effects.
Eliashberg derived coupled non-linear integral equations for Js(w) and
A(w) which involve the electron-phonon interaction in the function a*(w)F(w).

The Eliashberg equations have been used with great success to calculate the
properties of strongly coupled superconductors for which the frequency
dependence of 2 and A is important. They reduce to the BCS theory and
to the nearly equivalent theory of Bogoliubov [21] based on the principle of
“‘compensation of dangerous diagrams” when the coupling is weak. By weak
coupling is meant that the significant phonon frequencies are very large
compared with kg%, so that 4(w) can be regarded as a constant independent
of frequency in the important range of energies extending to at most a few
kpTe. In weak coupling one may also neglect the difference in quasi-particle
energy renormalization and assume that s = Zn.

The first solutions of the Eliashberg equations were obtained by Morel and
Anderson [22] for an Einstein frequency spectrum. Coulorab interactions were
included, following Bogoliubov, by introducing a parameter u* which re-
normalizes the screened Coulomb interaction to the same energy range as the
phonon interaction, In weak coupling, N(0)¥ = 1—u*. They estimated
from electronic specific heat data and u* from the electron density and thus
the transition temperatures, T, for 2 number of metals. Order-of-magnitude
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agreement with experiment was found. Later work, based in large part on
tunneling data, has yielded precise information on the electron-phonon
interaction for both weak and strongly-coupled superconductors.

4

Anavrvsis of TuNneLING Data
From the voltage dependence of the tunneling current between a normal .
metal and a superconductor one can derive 4(w) and thus get direct infor-
mation about the Green’s function for electrons in the superconductor. It
is possible to go further and derive empirically from tunneling data the
electron-phonon coupling, a?(w)F(w), as a function of energy. That electron
tunneling should provide a powerful method for investigating the energy gap
in superconductors was suggested by I. Giaever, [23] and he first observed
the effect in the spring of 1960.

The principle of the method is illustrated in Fig. 1. At very low temperatures,
the derivative of the tunneling current with respect to voltage is proportional
to the density of states in energy in the superconductor. Thus the ratio of the
density of states in the metal in the superconducting phase, N5, to that of the
same metal in the normal phase, Ny, at an energy eV above the Fermi surface
is given by

) Ns(eV)  (dIjdV)as

M (dIdV)m (18)

Nglw) /

/

Ml .
P—y=gy—=
AR il

Nn

(%%/) ~ Ng(w)~
ns .‘/wZ-AZ

Tunneling from a normal metal into a superconductor

Fig. 1.

Schematic diagram illustrating tunneling from a normal metal into a superconductor near
T = 0°K. Shown in the lower part of the diagram is the uniform density of states in energy
of electrons in the normal metal, with the occupied states shifted by an energy eV from an
applied voltage V across the junction. The upper part of the diagram shows the density of
states in energy in the superconductor, with an energy gap 2A. The effect of an increment of
voltage 8V giving an energy change &w is to allow tunneling from states in the range dw. Since
the tunneling probability is proportional to density of states Ny (w), the increment in current
41 is proportional to Ny (w)dV.
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Fig. 2.
Conductance of a Pb-Mg junction as a function of applied voltage (from reference 24).

The normal density is essentially independent of energy in the range
involved (a few meV). In weak coupling superconductors, for a voltage ¥V
and energy @ = ¢V, ’

Ne(w) @
Mo Jor—d7

As T — 0K, no current flows between the normal metal and the super-
conductor until the applied voltage reaches Afe, when there is a sharp rise
in dI/dV followed by a drop. This is illustrated in Fig. 2 for the case of Pb.

The first experiments of Giaever were on aluminum, which is a weak
coupling superconductor. Good agreement was found between theory and
experiment. In later measurements on tunneling into Pb, a strongly coupled
superconductor, Giaever, Hart and Megerle [24] observed anomalies in the
density of states that appeared to be associated with phonons, as shown in
Fig. 2. These results were confirmed by more complete and accurate tunneling
data on Pb by J. M. Rowell et al. [25] :

In the meantime, in the summer of 1961, Schrieffer had derived numerical
solutions of the Eliashberg equations working with a group engaged in de-
veloping methods for computer control using graphical display methods. [26]
He and co-workers calculated the complex 4(w) for a Debye frequency

(19)
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spectrum. Later, at the University of Pennsylvania, he together with J. W,
Wilkins and D. J. Scalapino [27] continued work on the problem with a view
to explaining the observed anomalies on Pb. They showed that for the general
case of a complex 4(w)

(dffdV)us Ny(w) Re { d }

(dZ/dV)sn M Jor—A%(w)
where Re represents the real part. From measurements of the ratio over the
complete range of voltages, one can use Kramers-Kronig relations to obtain
both the real and imaginary parts of d(w) = 4,(w)+idy(w). From analysis
of the data, one can obtain the Green's functions which in turn can be used
to calculate the various thermal and transport properties of superconductors,
This has been done with great success, even for such strongly-coupled super
conductors as lead and mercury.

For lead, Schrieffer et al, used a phonon spectrum consisting of two Lo-
rentzian peaks, one for transverse waves and one for longitudinal and obtained
a good fit to the experimental data for T << T, The calculations were
extended up to T¢ for Pb, Hg, and Al by Swihart, Wada and Scalapino, [28]
again finding good agreement with experiment.

In analysis of tunneling data, one would like to find a phonon interaction
spectrum, a*(w)F(w), and a Coulomb interaction parameter, u*, which when
inserted into the Eliashberg equations will yield a solution consistent with the
tunneling data. W. L. McMillan devised a computer program such that one
could work backwards and derive a*(w)F(w) and p* directly from the tunneling
data. His program has been widely used since then and has been applied to
a number of superconducting metals and alloys, including, Al, Pb, Sn, the
transition elements Ta and Nb, a rare earth, La, and the compound Nb;Sn.
In all cases it has been found that the phonon mechanism is dominant with
reasonable values of y*. Peaks in the phonon spectrum agree with peaks
in the phonon density of states as foydd from neutron scattering data, as
shown in Fig. 3 for the case of Pb. In/Fig. 4 is shown the real and imaginary
parts of 4d(w) for Pb as derived from tunneling data.

One can go further and calculate the various thermodynamic and other

(20)

properties. Good agreement with experiment is found for strongly coupled
superconductors even when there are significant deviations from the weak
coupling limits. For example, the weak-coupling BCS expression for the
condensation energy at 7= 0 K is

Epes = %N(mzndoz (@1)

where V(0)Zy is the phonon enhanced density of states and 4, is the gap
parameter at T == 0 K. The theoretical expression with Js(w) and d{(w)
derived from tunneling data, again for the case of Pb, gives [29, 30, 31}

Eineor = 0.78 Eggcs (22)

in excellent agreement with the experimental value
Eexp = (0.76+0.02) Egcs. (23)
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Comparison of a'F for Pb derived from tunneling data with phonon density of states from
ENERGY ( eV) neutron scattering data of Stedman et al. [8]
m .
: In Figs. 5, 6, 7, and 8 are shown other examples of a*(w)F(w) derived from
Real and imaginary parts of A versus aJ"AO for Pb. . tunneling data for Pb, In, [31] La, [32] and Nb;Sn. [33] In all cases the
Fig. 4 results are completely consistent with the phonon mechanism. Coulomb
g, . - . - . . .
Recal and imaginary parts of 4(w) = 4,(w) +id.(w) versus energy for Pb. (After McMillan . interactions play only a minor role, with 1* varying only slowly from one metal
& Rowell). . to another, and generally in the range 0.1—02.
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a'F for In (after McMillan and Rowell).

As a further check, it is possible to derive the phonon density of states,
F(w) from neutron scattering data and use pseudo-potential theory to calculate
the electron-phonon interaction parameter aq(w). From these values, one can
use the Eliashberg equations to calculate {i(w) and d(w) and the various
superconducting properties, including the transition temperature, T¢. Extensive
calculations of this sort have been made by J. P. Carbotte and co-workers
[34] for several of the simpler metals and alloys. For example, for the gap
edge, Ao, in Al at T = 0 K they find 0.19 meV as compared with an experi-
mental value of 0.17. The corresponding values for Pb are 1.49 meV from
theory as compared with 1.35 meV from experiment, These are essentially
first principles calculations and give convincing evidence that the theory as
formulated is essentially correct. Calculations made for a number of other
metals and alloys give similar good agreement.

ConcLusioNs .
In this talk we have traced how our understanding of the role of electron-
phonon interactions in superconductivity has developed from a concept to a
precise quantitative theory. The self-energy and pair potential, and thus
the Green’s functions, can be derived either empirically from tunneling data
or directly from microscopic theory with use of the Eliashberg equations.
Physicists, both experimental and theoretical, from different parts of the
world have contributed importantly to these developments.

All evidence indicates that the electron-phonon interaction is the dominant
mechanism in the cases studied so far, which include many simple metals,
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transition metals, a rare earth, and various alloys and compounds. Except
possibly for the metallic form of hydrogen, [35] which is presumed to exist
at very high pressures, it is unlikely that the phonon mechanism will yield
substantially higher transition temperatures than the present maximum of
about 21 K for a compound of Nb, Al and Ge.

Other mechanisms have been suggested for obtaining higher transition
temperatures. One of these is to get an effective attractive interaction between
electrons from exchange of virtual excitons, or electron-hole pairs. This re-
quires a semiconductor in close proximity to the metal in a layer or sandwich
structure. At present, one can not say whether or not such structures are
feasible and in no case has the exciton mechanism been shown to exist. As
Ginzburg has emphasized, this problem (as well as other proposed mechanisms)
deserves study until a definite answer can be found. [36]

The pairing theory has had wide application to Fermi systems other than
electrons in metals. For example, the theory has been used to account for.
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many aspects of nuclear structure. It is thought the nuclear matter in neutron
stars is superfluid. Very recently, evidence has been found for a possible pairing
transition in liquid He? at very low temperatures [37]. Some of the concepts,
such as that of a degenerate vacuum, have been used in the theory of ele-

mentary particles. Thus pairing seems to be a general phenomenon in Fermi

systems. .
The field of superconductivity is still a very active one in both basic science
and applications. I hope that these lectures have given you some feeling for

the

accomplishments and the methods used.
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