Chapter 8
COOPER PAIRS

Superconductivity arises from a very complicated set of inter-
actions between the electrons in a metal. I would like to consider a
very simplified model of the interaction of a pair of electrons in a
metal, since on the one hand, it is an instructive example of how
quantum mechanics works, and on the other hand, the main features
of this model are at the starting point of the modern theory of super-
conductivity.

If we neglect all effects of the crystal structure, then a metal of
volume V can be looked upon simply as a box filled with electrons.
If we neglect all interactions between electrons, the normalized en-
ergy eigenstates, using periodic boundary conditions, are

p(x) = (V) Y2 eik- /B (8-1)

where g = k?/2m. The possible k vectors in a cubic box of side L,
are given by

_ 2wnxh - 2mnyh _2mgh -2
kx = —ZK—', ky = L ’ kz L (8 )

where ny, n,, and n, are integers ranging from —« to ©.

When we fill up the box with electrons we can put two electrons
in each state {two for spin). The configuration of lowest total energy
for N electrons will have the states filled up to a certain maximum
value, k¢, the Fermi momentum, which is given by

N= 3 2, (8-3)
k<kg

where the sum is over all k with k < kg. The filled k states form
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Fig. 8-1

Two noninteracting electrons outside the Fermi sea.

a sphere, called the Fermi sea [Fig. 8-1]. For macroscopic L and
N, the k vectors are spaced closely enough so that we can replace
the sum over k by an integral. Since the interval between ky values
is 27h /L,

L
E - 27R dk'x
and

. d’k

v "V emy (8-4)

where V= L3 There are V/ (27h)3 states per unit volume in momen-
tum space. From (8-3) we then find that kg is given by

ke = (3720)¥%s (8-5)

where n = N/V is the density of particles; k¢ is an intensive para-
meter.

The model we want to consider is that of two electrons just out-
side the surface of the Fermi sea (the Fermi surface) interacting
through a weak attractive force. We shall neglect all interactions
between the electrons in the Fermi sea, and between the electrons
in the Fermi sea and the pair. This is where this model differs from
amodel of superconductivity. We shall also assume that the electrons
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have opposite spin values, one up and the other down, and therefore
the exclusion principle does not prevent them from being in the same
spatial state simultaneously. Our problem shall be to find the en-
ergy eigenstates of the interacting pair of electrons.

H there is no interaction between the two electrons, then the en-
ergy eigenstates of the pair are simply of the form

ey ry/h ik orp/B
zp(rb rz,t) = < J‘T £ J‘T e i(8k1+8k2)t/ﬁ.

(8-6)

Now if the electrons interact with each other, then (8-6) will no
longerbe a stationary state, or energy eigenstate, since as the parti-
cles scatter from each other they keep changing their momentum
values. The states of the interacting pair will be of the form

ik ry/E ik -rp/h
Pt = D a® S @-7
kik,

and for an energy eigenstate

Kk = ¢~ IEt/n 8 e’ (8-8)

%y
E is the total energy of the pair. Equation (8-7) expresses ¥ as a
double Fourier series in ry and r;. The amplitude agk,(t) is the
amplitude for finding particle 1 with momentum ks and 2 with mo-
mentum k;. Because all the states inside the Fermi sea are already
filled, the amplitude for finding either particle in a state inside the
Fermi sea must be zero, that is, agk, is zero unless both kg and
k; are greater than k..

How does the amplitude ajk,(t) change in time ? X there is no
interaction then because (8-6) is a stationary state,

)
i ] 3t 2k ) = (ex, + &) 2k, ¢ (8-9)

only the phase of the amplitude changes. When the particles inter-
act, then if at one instant they have momenta k; and kj, at a slightly
later instant they will have an amplitude for having different momen-
ta k;' and k', because they can scatter from each other.

Thus we expect a change in the amplitude ay i, (t) due to pairs
with k¢' and k,' scattering into k;, k; [Fig. 8-2]; this term will be
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Fig. 8-2
Scattering of a pair from ky', ko', to kj, ko.

proportional to the amplitude ay 'y ' for the particles to have mo-
menta kq', k;'. This process will add a term on the right side of

(8-9) of the form kszv(kikz Wlki'kz')ak;kz'- The quantity (R, [7]k,'k,"
is called the matrix element for scattering from kyk,' to kk,.
With this term the Schridinger equation for the rate of change of the
amplitude becomes

2 2k, ®) = (el * o), © + kjékz, (e 7l ') sy ©
It looks as if we've left out a change in the amplitude due to particles
with kk, scattering to other states k,'k,'. This term, being propor-
tional to ap Ky’ has the same structure as the "diagonal"™ term
(koks |7 [kiks) 8k, in (8-10), so we can regard it as being already in-
cluded in (8-10).

One can regard the amplitudes (kik,|¥|k;'k,') as being the matrix
elements of an interaction operator 7 in the "k;, k; basis." In a very
complicated system, the matrix elements (kik,|7 [k 'k,') are hard to
determine; usually one has to make educated guesses and see how
well the results agree with experiment.

One immediate requirement on the matrix elements is that the
total proba.bilit:ykzlikz 'akikz(t) |2 not change in time. This implies, as

usual, that
Ckikol 71k ) * = (ky'ky' | 7 iy s (8-11)

¥ must be a Hermitian matrix.
1t is illuminating to write (8-10) in terms of the wave function
P(ry, T t). The result is
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.y K’ i
5y (ry, 2, t) = (——VE——— sz)zl)(rprz,t)

2m 2m
(8-12)
+ [ dry'dry' {rym] Virg'ry') xy', o', 1),
where
1 e L e .
(rirzlvlrlvr2|> =.‘ﬁ_ Ek e(lkj ryt+ik, r2)/5<k1k2| Vlki'k2'>
1s 52
ki'vkz'
(8-13)

x o ikt oy’ — ik’ - xy') /R

Equation (8~12) is in the form of a Schridinger equation, only with a
nonlocal potential {ryT;|¥|r'r,'). The rate of change of the ampli-
tude for the particles being at ry, r, depends on the amplitude for the
particles being at far away points as well as close points. If the in-
teraction can be represented simply by a potential v(r; —r,), as in
the hydrogen atom, then

(rery] Ve ') = 6(ry— 118 (xy ~ 12") V(T — Ty). (8-14)
In this case

1
(kekol 7 Iky'k,") =-‘—,'Vat-' kK)og K (8-15)

where k = (k;— ko) /2, k' = &' —K;')/2, K= k; +k; and K' =k;' +k,';
alsov(q) = Jd®re-i9'Ty(r). The 6 symbol guarantees that the total
momentum of the pair is conserved in the interaction.

Generally, if the total momentum of the pair of particles is con-
served in the interaction the matrix element connects only states
with the same total momentum and thus it has the form

(kelel 7 [hey'ly') = T, o ISR, K - (8-16)
Then the nonlocal potential has the form

{ryzel Tirg )y = (x|l v R-R"HIxD, (8-17)
where R = (r;+19)/2, R'= (r;"+15')/2, r=r1—r;and r' = 7y’ — 717

are the center-of-mass and relative coordinates.
In an energy eigenstate, when total momentum is conserved
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g, k,®) = ay (K)o~ Et/T, (8-18)

and (8-10) becomes
(®~ o~ 1) 20 =2 i, o Ko ). (8-19)

The total momentum appears in this equation only as a parameter.
For a general interaction?}, 1+ (K), Eq. (8-19) is very hard to solve.

In a metal one has a repulsive Coulomb interaction between the
electrons, together with an attractive interaction between the elec-
trons and ions. Now when an electron moves, it tends to pull the
ions toward it. Of course, the ions don't get very far because they
are very heavy and are bound to the vicinity of their lattice sites.
However, when an ion moves toward the electron, the other electrons
tend to follow the ion, and therefore the first electron. This means
that because of the presence of the ions, there is some tendency for
electrons to attract each other. The total interaction between any
two electrons is a composite of this attraction plus the Coulomb re-
pulsion. In some metals, this total interaction is attractive for elec-
trons near the Fermi surface. To a first approximation we can re-
present this interaction by

Vo
— = <ks, ko, ky', k' <k
_ 7 ki <kn k. ki, K a ~
0: otherwise

where v, is positive, and k; is a momentum slightly greater than kg.
With this interaction, the Schridinger equation becomes

E-ep — k)2 ®) =~ !{}Z'ak. x, (8-21)
kl

where the prime on the sum indicates that only values of k' between
kg and k,, and such that k¢ < [(K/2) +k'|< k, are to be summed over.!
To solve (8-21) we divide both sides by E — g Tk, and sum over
the allowed values of k. Then

1 For an sstate, for whichay (K) is independent of the direction of k, the sum over
k cannot vanish. Some ay (K) must be nonzero else y = 0. Then if the sum van-
ished, Eq. (8-21) would imply that for this k, E = € +€, =(k%/m) + (K%/4m).
However only one k can satisfy this condition, so that ag (K) can be nonzero only
for one k. Thus the only non-zero terms in the sum are all equal, whereupon the
sum over k' must be nonzero.
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Fig. 8-3
Graphical solution of Eq. (8-24).
Sak=-n3__ 1 ..m. 8-22
k k VE E—eki—ekzz'ak ( )

Canceling the sum over ay from both sides we find a condition to
determine the possible eigenvalues E:

=_ Yo Y _
Ty z E- E'kx_akz (8-23)

The nature of the solutions can be seen graphically. Let

L1 »
#(E) VE e (8-24)

The eigenvalue condition is thus #(E) = —1/v,. %(E) has a pole at
each possible energy, €, * €k, of a noninteracting pair of electrons
outside the Fermi sea, with total momentum K, and ky and k, between
k¢ and k,; these energies are at least 2e¢, where €= kfz/Zm. Thus
&(E) looks as shown in Fig. 8-3. We see that ¢(E) intersects —1/v,
at many places above the minimum energy of a noninteracting pair;
these energies correspond to states qualitatively like the noninter-
acting states (8-6). Also, for v, positive, there is always one inter-
section at an energy, Eb, below the minimum. This means that the
interaction has produced a "hound state® of the two electrons; this
new state is quite different from the noninteracting states (8-6).

Let us solve for Ey, in the case K = 0. Then k; =k, k; =—k, and
the restriction that k, and k, be outside the Fermi surface is trivial
to handle; replacing the sum by an integral we have
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ka g% 1
_ — (8-25)
Q(E) = !{ (Zﬂﬁ)s E_zek’
f

m c2 1
= orn sff kdex o gey’ (8-26)

where £, = kaz/zm. For £, close to £f we can replace the k inside
the integrand by k¢, and we find, for E < 2&;,

where
mkf d’k
N(0) =W=/m S(ex~¢eg) (8-28)

is the density of states at the Fermi surface. Equating $E) to —1 /v,
and writing

Eyp =2¢ef-2A
we find
A = E'a"ef

—_a 1 (8-29)
Q2/WN(O) _

The energy €, — £¢ is on the order of the Debye energy, wp, which
is & times the maximum frequency of a lattice oscillation in the
metal. Typically wy/e¢ ~ 1/100, and vyN(0) ~ 1/4. Thus the binding
energy per electron in this bound state is
AR wDe—Z/voN(O). (8-30)
Notice that A is a highly nonanalytic function of the parameter v,.
This mechanism for binding electrons together, which is called
Ppairing,” was discovered by Cooper; electrons in such bound states
are called Cooper pairs.?

The number of possible k values allowed in (8-24) drops sharply
as K becomes different from zero. The poles of #(E) are at the en-
ergy values of the possible noninteracting pairs but because there

2 L.N. Cooper Phys. Rev. 104, 1189 (1956).
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are fewer k values allowed, ®(E) is smaller in magnitude for E less
than the minimum singularity. This means that for K = 0 the inter-
section of ®(E) with —1/v, lies closer to the minimum noninteracting
energy value of the pair than for K = 0, and thus the binding energy
of a bound pair decreases, rapidly in fact, with increasing K. The
point is that the fewer the number of states connected together by
the attractive interaction (kik,|?7|k;'k,'), the smaller will be the
binding energies that result. The biggest binding energy occurs for
electrons diametrically opposite each other around the Fermi sea.
To find the wave function of a Cooper pair we notice that from (8-21)

ap(K) = — constant (8-31)

E- €ky~ €k,
Thus, from (8-7), keeping K fixed in the sum

¢(r1,r2)~eix ’ ("‘1".1‘2)/2ﬁ ..]_'. 2' M.
Ve Eoeg ey, (8-32)

The relative wave function ¢(r) is thus

' &%k elk-r/h
@rh)? E-g) —eg, (8-33)

P(r) ~

For the K = 0 bound pair ¢(r) behaves roughly as (1/r) sinfker/H)
times a slowly varying function of r similar to sin(mAr/2k¢h). The
length £ = 2kfli/mA is essentially the size of bound pair. Thewave
function ¢(r) is spherically symmetric, and therefore the pair has
angular momentum zero; it is in an s-state.

To explain superconductivity one must take into account the inter-
actions between all the electrons at the same time. Then one finds
that all the electrons at the Fermi surface form pairs with the same
total momentum. When this momentum is different from zero there
is a net current — a supercurrent. In order to slow down this cur-
rent one can't simply slow down the electrons one at a time, as in a
normal conductor, because they are all paired together to the same
total momentum; one has to slow down all the electrons at the same
time. Because this is extraordinarily difficult to do, supercurrents
persist indefinitely.?

3 See, e.g., J.R. Schrieffer, Theory of Superconductivity [ W.A. Benjamin, New York,
1964].
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A few final comments about the nonlocal potential {ryr;|7|rs'r,'):
If we assume that the relative angular momentum of the pair of par-
ticles is conserved in their interaction, then if in the Schrédinger
equation (8-12) ¥ (ry, Ty, t) is an eigenstate of angular momentum, so
must be the term

[ @y &ry o] Tire ) ey’ 1, 1),

in order that the angular momentum of the pair be constant in time.
This implies that (¥;7,]7|r{'r,') must be of the form, when total mo-
mentum is also conserved
o 4
@ 0| Tiry', 1"y = 2 2. Ylm(ﬂr)Ylm(ﬂr')Vl(R-R’,lrl,lr' [
1=0 m=-1l

(8-34)
where 2, denotes the angles of the vector r. Then Fourier trans-
forming, and using formula (6-85) we see that 7’k, ' &) must be of the
form

0 z
T, 10 ® = lgo mg_l Yim @) Y @) ¥, &, k0 ) (8-35)
V1.k k' &) is the matrix element for the scattering from a state with
magnitude of relative momentum k' and relative angular momentum
1 to one of relative momentum k and angular momentum . Looking
back at the interaction (8-20) we see that it is an interaction only be-
tween particles in relative s-states, which explains why the wave
function of the Cooper pair also was an s-state.

In addition to electrons in metals, pairing takes place in liquid He?
below 0.0027°K, in p-states. Nucleons outside closed shells in
nuclei, as well as bulk nuclear matter in neutron stars, can also
undergo pairing.

PROBLEMS

Calculate {r?) for the K = 0 bound pair.

2. To see the role played by the Fermi sea in the Cooper pair prob-
lem, suppose that k¢ = 0, What is then the exact condition on v,
that there be a bound state (E < 0) for K = 0?

[
.
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Estimate as a function of K the volume of k-space entering the
sum (8-24) for K # 0.

Find the possible bound state energies, and eigenfunctions for
a ‘Cooper pair with total momentum zero, if the potential is at-
tractive and constant in d-states when both particles are in a
thin shell about the Fermi surface, and otherwise zero.



