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Psychological
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of Speech Sounds

ROGER N. SHEPARD*

Introduction

Since few of us have the time or interest to read more than a small
fraction of the printed information with which we are increasingly
bombarded, speech still carries the greatest burden of human communi-
cation. Under normal circumstances, then, communication is a pri-
marily oral-aural transaction. For, as our great reliance upon the tele-
phone attests, such communication can be effectively carried on in the
complete absence of all but purely auditory cues, whereas (except in
the special case of highly skilled lip readers) it begins to deteriorate
as soon as the auditory signal is degraded by attenuation, distortion,

or noise,

® The analyses reported here owe much to my former coworkers S. C. Johnson for
the development of the algorithm for hierarchical clustering and Mrs. ].?]. Cha.ng for
programming the exponential method of proximity analysis [1]. Ex?enswe assistance
in carrying out the analyses and preparing the figures was provided by Carolyn
Brown, Maureen Sheenan, and, particularly, Christine Feng. This work was sup-
ported by Bell Laboratories and the National Science Foundation (Grants GS-1302

and GS-2283).
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68 Human Communication: A Unified View

If, now, we turn to a study of this auditory signal upon which most
communication so critically depends, we find that it, in turn, can be
analyzed into a sequence of distinguishable, psychologicall.y elemer}tar.y
components—the phonemes. These are the smallest units, the indi-
vidual vowels and consonants, that we intuitively recognize as separately
producible speech sounds. In terms of the articulatory organs (lips,
tongue, glottis, etc.), they correspond to more or less identifiable con-
figurations or simple changes (openings, closures, etc.). In terms of
the resulting acoustic signal, they correspond to more or less identifiable
energy patterns in the time-frequency domain.

Basic to human communication, then, is the ability to recognize or
identify these individual phonemes as they follow one another in the
auditory stream of speech. This is not to say that the understanding
of connected discourse consists solely in the separate recogpition of
each phoneme as it occurs. For, unlike the identification of isolated
phonemes in the laboratory, the recognition of those very same sounds
in the course of connected speech is typically aided by additional
processes of a rather different kind, viz., processes of segmentation and
utilization of semantic and syntactic cues from context. ~Still, the process
of recognition of individual phonemes must be regarded as fundamental
in the sense that it can be shown to operate in the absence of the
context upon which these higher-level processes depend; whereas any
context that is in fact present consists largely, itself, of at least partially
recognized phonemes.

For these reasons, investigators concerned with the perception of
speech have devoted considerable effort to the study of the human
listener's ability to identify vowel and consonant phonemes—even when
ﬂ'xese are presented without context. Typically in these studies, indi-
V}dual phonemes (i.e., phonemes that have been either uttered in isola-
tion or ex.cerpted in some way from context) are presented in random
order to listeners who indicate, after each presentation, which phoneme
they. think has. been presented. The data from such an absolute-identi-
ﬁ:&f’:sif)}"ji’r:me?otra;: hmos{t (;i)nveniently cast in ’the form of an n X n
identified corr%yctlv ang ho t ? . P.honemes‘s'tudle.d, how often it was
n 1 othor phor{emes TOI:V (;1 ten it was misidentified as each of the
fusion matrix will . e hope is that the numbers in such a con-

x will reveal something about how these speech sounds are

processed within the listener.
O o, A e by et an et of
in some way. Indeod thce );m{)l'sl King or ﬁltenng' the acoustic signal
tained such a level of ‘erfec:iopa’ , ‘}:les for processing speech have a.F-
tions, confusions betwfen X n in humans that, under favorable condi-
phonemes occur only rarely—even when they
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are presented without context. In order to ensure a rate of confusion
that is sufficiently revealing of the underlying perceptual mechanism,
therefore, it is often helpful to degrade the stimulus deliberately, e.g.,
by the addition of noise. Moreover, by examining the changes in the
patterns of confusion that result when we selectively mask or filter out
particular ranges of audio frequency, we can obtain more direct evidence
on how the process of identification depends upon the physically
measurable parameters of the stimuli.

It is important to recognize, though, that any one confusion matrix
is based solely upon the responses of the listeners and can, therefore,
be constructed without any knowledge of the physical properties of
the stimuli. In this respect any structure or pattern that may be
discerned in such a matrix of numbers represents the interrelations
among the stimuli as they are perceived psychologically-—not as they
are measured physically. Once such a purely psychological structure
has been identified in this way, however, we are in a favorable position
to turn to the psychophysical problem of then relating this structure
to any independently measured physical parameters.

If we are lucky, the results might even lead to more sophisticated
devices for the automatic recognition or for the efficient compression
and transmission of speech (technological goals that are discussed in
Chapter 11). Here, however, we shall focus primarily on the more
purely psychological problem, viz., the problem of discovering the
psychological structure of a set of speech sounds as that structure is
revealed solely in the responses of listeners.

This substantive problem will also serve as a vehicle for demonstrating
the advantages of some recent methodological innovations, namely some
computer-based techniques for transforming patterns hidden in large
matrices of empirical data into a readily assimilable pictorial form. In
this respect, there will be a close connection with some of the later
chapters (e.g., Chapters 7 and 8) that are also concerned with the use
of machines to convert raw data into a more usable form.

Confusion Data as a Source of Information
about Psychological Structure

Let us turn now to a more detailed consideration of the nature of a
confusion matrix of the sort we have been considering, and to the prob-
lem of discovering and characterizing whatever pattern or structure may
lay hidden in its numbers. Following the usual convention, let us sup-
pose that these are arranged in such a way that the entry at the intersec-
tion of the ith row and jth column tells us how often the ith stimulus
led to the response that would be correct for the jth stimulus. Thus
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“degenerate” cases [22, p. 240], nothing need be known about the form
of the function relating the given data to the Euclidean distances to
be recovered (except, of course, that this function is monotonic). This
initially unknown form can nevertheless be essentially recovered, and
to the extent that it is recovered, the spatial solution is determined
to within the “extended” group of similarity transformations [26]. Since
the “degenerate” exceptions have arisen only rarely in practice, much
can be accomplished without assuming more than monotonicity.

Even so, any additional knowledge that we may have about the func-
tional form of the underlying relation can be used to increase the preci-
sion of the spatial representation and to decrease its susceptibility to
the sometimes troublesome “degeneracies” [27, 28]. It is therefore of
some potential import that in the specific case of confusion data, the
relation in question—even though assumed to be no more than mono-
tonic—has in fact consistently turned out to have a very particular,
well-defined form. With the exception of occasional degenerate cases,
that is, the relation between the frequencies with which stimuli are
confused and the corresponding distances among points in the recovered
spatial solution has invariably been found to be closely approximated
by a simple exponential decay function.

The particular method for the “proximity analysis” of confusion data
to be illustrated here takes advantage of this empirical result and—in-
stead of seeking the spatial representation that best fits the merely
monotonic hypothesis—seeks the representation that best fits the stronger,
exponential hypothesis. Although an analysis of this sort was originally
pr()pos("d over 15 years ago [12, 29-32], it was not until the more
recent implementation of appropriate numerical methods on a dig-
ital computer [21, 22, 24, 25] that it has become clear just how
such an analysis should be achieved. The procedure described here
g)]lows ”KNSk‘fl’S‘ [?4] lead of using a variant of the method of “steepest
dsent to i m_xpltly dfved s of deprre o
comontor omeman ase an expon.entlal decay function. The
comp program itself was developed primarily by Mrs. J.-J. Chan
in ‘c;’ﬂlaboratwn with the present author {1]. Yoy S &
entr; ps'tla:: t‘}‘::}:e]t:gv:‘;‘l)‘“ca“y giYen co.nfusion matrix in which the
response belonging to th:aec'l‘;entciy vs;lth which 'the ith stimulus led to the
entries p;; are not entirely Ztuit:.bxl:ua:;e::uthls ;aw f(?m‘]’ however
we require that the proximity between i dr:eS l(') T e o o e
any two points) be the same in both di i ( l]-('3 t}?e dlsta'nce between
the case that p,; = p;;.  Moreover h“’eCtIODS, . m}l r.lot o ger‘xeral b
between a point and itself alwa , :V kereas N PfOlel.ty (or dlStance')
will not usually happen that p,. 3’3 akes o‘n the sax.ne limiting value, it

pii = pj; tor different stimuli i and j.
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Before proceeding to the analysis itself, then, we first define for every
pair i and j a derived estimate of the psychological proximity or similarity
Si; between them in terms of the four relevant numbers from the empiri-
cally given confusion matrix, ViZ., pPij, Pji, pii, and pj;. A definition
that has been found serviceable for this purpose is, simply, the total
number of confusions between i and j divided by the total number of
correct responses to these same two stimuli or, formally,

Sy = Pii + Pii

Pii + pis
Although there are theoretical arguments for other, slightly different
definitions [30, 31], the formula just given has typically led to essentially
the same results in practice and, moreover, has seemed to be somewhat
less affected by statistical fluctuations in the four p components. In any
case we have, by means of this formula, achieved the desired condition
of symmetry, S;; = S;;, and equality of the diagonal entries, S;; = §;; =
1for all i and j.

The iterative process itself is applied to the resulting symmetric matrix
of these proximity measures, S;;, to find a configuration of points and a
set of values for the parameters of the postulated exponential that pro-
vide, jointly, an optimum fit to the S;;. Specifically, we seek to minimize

Z {Si;; — (ae®Pii + ¢)}2

i>;
where D,; = distance between points ¢ and j in recovered configuration
a = intercept of recovered exponential decay function
b = slope of recovered exponential decay function

asymptote of recovered exponential decay function

fi

c

The D;; are in turn computed from the coordinates for the points
recovered during each iteration by the Euclidean formula

D;; = V; (T — zjn)?

where x;; is the coordinate for the ith point on the kth orthogonal dimen-
sion of the underlying space. .
Actually, in the analyses of proximity measures derived specifically
from confusion matrices in the manner indicated above, we always have
Sii =1 for all i. Since the distance D;; between a point and itself
is zero, it is natural to ensure that the fitted exponential function inter-
cepts the S axis at unit height. In the analyses to be repo‘ﬂed here,
therefore, the parameter a is not allowed to vary along with b and
¢ but is constrained instead to the fixed value 1. Also, in order to
facilitate convergence (and to avoid merely local minima), we have
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found it helpful to add two further refinements to this method: (1)
a procedure for choosing starting values for the x coordinates and the
variable parameters b and ¢ on a rational rather than a purely arbitrary
basis; and (2) a second-order variant of the gradient method in which
the adjustments during each iteration are based upon estimates of the
second, as well as the first, partial derivatives of the expression to be
minimized with respect to the variable coordinates and parameters.
Additional refinements have also been introduced to ensurc that the
variable parameters b and ¢ will end up with appropriate signs. These
and other details of the computing algorithm are somewhat tangential
to our present focus on substantive problems of speech perception and
so will be reserved for fuller presentation elsewhere.

Spatial Representation Based on Confusions
Among 16 Consonant Phonemes

The data with which we shall be most extensively concerned, here, are
from the classical study of confusions among 16 English consonants by
Miller and Nicely {33]. Basically, the listeners in their experiments
attempted to identify each of 16 different syllables as these were pro-
nounced from a randomized list. All syllables terminated in the same
vowel /a/ (as in father). They differed only in the consonant that
preceded this vowel, which was always one of the 16 following: /p/,
5:1// IXI, 181, 184, Is), 111, [b], 14/, lgl, Iv], 181, 12/, [3/, |m/, and

Alt‘ogether, Miller and Nicely obtained 17 complete 16 X 16 confusion
ma%tnces,‘ each under a different condition of filtering or signal-to-
noise ratio, and, very fortunately for our present purposes, these were
presented in full in their published report. To start with, however,
we.shall confine our attention to just one matrix, obtained i)y pooling
their tal?les.l through VI for those six conditions in which bandwidth
\l:ras x{lalntfalned at .2.00 to 6,500 Hz and in which deviations from the
e‘st hstgmng condition were imposed only by manipulating signal-to-
n;nse rago (S/N). Combining data in this way permits the recovery
(t)o ‘: arsga}i;l.al representation of greater stability without entailing any un-
o oot 1;?:5-0‘7;:;1, as “1;6 shall later see, although variations in S/N
on the intornet patte:::"zf etrh of confusx(‘)ns, they have little or no effect
the below-diagonet 1 o0se confusions. Table 4.1, then, presents
measrer b ag 3 . alf of the 16 x 16 symmetric matrix of proximity
formula for §; ,-ugit fol:l[?alt)};ie[.mo}ed confusion matrix by means of the
The problem is to convert int

exists implicitly in the data of o explicit form whatever pattern already

this table. This is essentially achieved
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Fig. 4.1. Two-dimensional spatial representation for 16 con-
sonant phonemes (based on the pooled data from Miller
and Niceley's six flat-frequency-response conditions).

in Fig. 4.1, which presents the two-dimensional spatial representatior,l,
obtained by applying the method of “exponential analysis of proximities
to the empirical proximity measures of Table 4.1.

The recovered configuration has been rigidly rotated so that the vertical
and horizontal axes of the figure partition the 16 points into those repre-
senting the unvoiced stops and fricatives | ptkfBsf/, the corresponding
voiced stops and fricatives /bdgvdzz/, and the (voiced) nasals /mn/.
Now, by an entirely different method, Miller and Nicely had already
demonstrated that among the so-called “distinctive features” that linguists
have invoked as a basis for classifying consonant phonemes, those of
voicing and nasality go the furthest toward accounting for these data.
The emergence of the three-way grouping noted in Fig. 4.1 does not
therefore provide in itself any new insight into these data. Still, it does
at least attest to the potential validity of the gross features of spatial
representation of this type.

Moareover, in view of the fact that these consonants were considered

by Miller and Nicely to differ with respect to as many as five different
distinctive features (viz, affrication, duration, and place of articulation,
as well as voicing and nasality), it is noteworthy that 99.4 percent of the
variance of the data in Table 4.1

can be accounted for solely on the basis
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of the two dimensions of Fig. 41. The residual departures of the
original proximity measures S;; from the reconstructed exponential decay
function of the distances D;; in this recovered two-dimensional space are
displayed in Fig. 42. (Each point in this plot corresponds, of course,
to a pair of the consonants.)

The fact that we can obtain such a good fit in two dimensions does
not, however, mean that these dimensions must be interpreted as reflect-
ing variations in two distinctive features only. On the contrary, as we
move from left to right across the lower half of Fig. 4.1, we encounter
four discernible vertically oriented groups consisting, successively, of the
unvoiced stops /ptk/, the unvoiced fricatives /f0sf/, the voiced fricatives
/vdz3/, and, not entirely separated from the preceding group, the voiced
stops /bdg/. So the distinction of affrication is at least partially pre-
served. Further, the parallelism between the unvoiced and voiced frica-
tives with respect to place of articulation (and possibly duration) is
maintained in the parallel vertical ordering of the two series of corre-
sponding points for /f8s{/ and /vdz3/. Evidently it would be an over-
simplification, then, to describe this space solely in terms of the distinctive
features of voicing and nasality.

Of course, we can always seek a new bestfitting solution in a space
of higher dimensionality, and the fraction of variance accounted for

451

40+

35+

Given proximity measure of confusion

Recovered interpoint distance

Fig. 4.2. Goodness of fit of the confusion data for 16 con-
sonants to an exponential decay function of interpoint
distance in the two-dimensional representation of Fig. 4.1.
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in the given proximity data can only be increased thereby. Indeed,
previous attempts have been made to extract as many as four spatial
dimensions from these same data [20]. So the two-dimensional results
shown in Figs. 4.1 and 4.2 do not fully settle the question of the true
psychological dimensionality of these stimuli. Still, with less than 1
percent of the variance remaining to be accounted for, relatively little
psychological importance could be attached to any additional spatial
dimension that might be extracted. Indeed the error variability inherent
in the S-measures themselves may well amount to as much as 1
percent. If so, the determination of the projections of the points on
a third axis—with a concomitant increase, by half again, in the total
degrees of freedom of the configuration—is not likely to possess much
reliability.

A more promising alternative for evincing further structure in these
data will be described in a subsequent section. An attempt will then
bf% made to show how that alternative technique can be used in combina-
tion with the spatial type of solution just discussed to reveal further
regularities in the data of Miller and Nicely. Already, however, it
should be clear that the spatial solution by itself can furnish a useful
reduction of the original confusion data. It is a reduction in that
all 120 of the S-values originally given in Table 4.1 can now be
rec.O"Stm"ted (except, of course, for the approximately 1% percent
resx.dual variance) from just 34 numbers (viz., the 2 X 16 spatial co-
ord.mates together with the two parameters of the fitted exponential).
It is a useful reduction in that the information or structure, which was

only implicit in Table 4.1, has been converted in Fig. 4.1 into an immedi-
ately accessible, explicit form.

Spatial Representation Based on Confusions
Among 10 Vowel Phonemes

Before presenting the second of the two methods of analysis to be
S:;%r;bz(fi ]:}TTE,ﬁlt may be helpful to consider a second illustra};ive appli-
honemes tIa rst method—this time to vowel rather than consonant
phone lla.bi n adwell'-kno‘wn study by Peterson and Barney [34], ten
o ram)l'om ; (;vor s differing only in the vowel were presented aurally
after each Tder to a group of listeners who were requested to indicate
ach presentation which of the ten words they thought had been
%‘223‘1“5"‘,‘}; ,3 he words (“heed,” “hid,” “head,” “had,” “hod,” “hawed,”
initial’an(;‘te(:’m"n “lhud, and *heard”) were alike with respect to the
the interpolat (; a consonants / h/ and /d/ but differed with respect to
1oy, reposted vowel, fil, 111, fc], [=l, Ial, Il [vl, [ol, |al, OF
» respectively.  The difficulty of the task was partly determined by
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the further circumstance that in different presentations the same word
was pronounced by different speakers (who varied in both age and sex).

A 10 X 10 symmetric matrix of proximity measures was computed
from the resulting confusion matrix [34, table I], and was then subjected
to the exponential analysis of proximities as before. Best-fitting con-
figurations were sought in both two-dimensional and three-dimensional
space. The resulting three-dimensional solution is shown in Fig. 4.3,
where an attempt has been made to encode variations in the third dimen-
sion (depth) by variations in the sizes of the spheres representing the
ten points. The obtained three-dimensional structure has some face
validity. At least, words that seem similar in sound (like “hod” and
“hawed”) are close together, whereas words that seem relatively differ-
ent (like “heed” and “hud”) are far apart.

The extent to which the distances among the ten points can be used
to account in this way for the actual frequencies with which these words
were confused is indicated in Fig. 44. This time the exponential decay
function, with which the distances were brought into a mutual best
fit, accounts for 99 percent of the variance of the given proximity data.
( Actually, however, because so many of the S-values are essentially
zero, this is somewhat less impressive than the 99.4 percent reported
in connection with Fig. 4.2.)

Further evidence for the validitiy of such a spatial representation
can be sought in its relations with other, external variables. In this
connection, it should be noted that it is only the internal structure of
the configuration itself that is uniquely determined by the data; the
orientation of the recovered configuration with respect to the reference
axes is wholly arbitrary. There is, therefore, no reason to suppose that
any given external variable (such as the physically measured frequency
of a particular formant) will be especially related to the projections

I

[\

Fig. 4.3. Three-dimensional
spatial representation for 10
vowel phonemes (based on
the data of Peterson and
Barney).
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in the given proximity data can only be increased thereby. Indeed,
previous attempts have been made to extract as many as four spatial
dimensions from these same data [20]. So the two-dimensional results
shown in Figs. 4.1 and 4.2 do not fully settle the question of the true
psychological dimensionality of these stimuli. Still, with less than 1
percent of the variance remaining to be accounted for, relatively little
psychological importance could be attached to any additional spatial
dimension that might be extracted. Indeed the error variability inherent
in the S-measures themselves may well amount to as much as 1
percent. If so, the determination of the projections of the points on
a third axis—with a concomitant increase, by half again, in the total
degrees of freedom of the configuration—is not likely to possess much
reliability.

A more promising alternative for evincing further structure in these
data will be described in a subsequent section. An attempt will then
be made to show how that alternative technique can be used in combina-
tion with the spatial type of solution just discussed to reveal further
regularities in the data of Miller and Nicely. Already, however, it
should be clear that the spatial solution by itself can furnish a useful
reduction of the original confusion data. It is a reduction in that
all 120 of the S-values originally given in Table 4.1 can now be
rec'onstructed (except, of course, for the approximately 14 percent
resxflual variance) from just 34 numbers (viz., the 2 X 16 spatial co-
(I):dilsnztes tog[ethgr V\flth ~the two pa‘rameters of the fitted exponential).

useful reduction in that the information or structure, which was

only implicit in Table 4.1, has been converted in Fig. 4.1 into an immedi-
ately accessible, explicit form.

Spatial Representation Based on Confusions
Among 10 Vowel Phonemes

Before presenting the second of th
. . e two methods of analysis to be
described here, it may be helpful to consider a second illustrative appli-

cation of the first method—this time to vowel rather than consonant

phonemes. In a well-known study b
monosyllabic words differin e v e e 8. aurally

: g only in the vowel were presented aurall
:;t random order to a group of listeners who were reqtll)ested to indicatz
er each presentation which of the ten words they thought had been
%’323‘1“?“,; ;;r he words (“heed,” “hid,” “head,” “had,” “hod,” “hawed,”
initial’an(;vte(:m , ;hud, and “heard”) were alike with respect to the
the interpolat (;"a consonants /h/ and /d/ but differed with respect to
Il rerposees vowel, i1, )11, Jel, [zl, [al, [al, [o], [u], |s], of
» Tespectively. The difficulty of the task was partly determined by



Psychological Representation of Speech Sounds 79

the further circumstance that in different presentations the same word
was pronounced by different speakers (who varied in both age and sex).

A 10 X 10 symmetric matrix of proximity measures was computed
from the resulting confusion matrix [34, table I}, and was then subjected
to the exponential analysis of proximities as before. Best-fitting con-
figurations were sought in both two-dimensional and three-dimensional
space. The resulting three-dimensional solution is shown in Fig. 4.3,
where an attempt has been made to encode variations in the third dimen-
sion (depth) by variations in the sizes of the spheres representing the
ten points. The obtained three-dimensional structure has some face
validity. At least, words that seem similar in sound (like “hod” and
“hawed”) are close together, whereas words that seem relatively differ-
ent (like “heed” and “hud”) are far apart.

The extent to which the distances among the ten points can be used
to account in this way for the actual frequencies with which these words
were confused is indicated in Fig. 4.4. This time the exponential decay
function, with which the distances were brought into a mutual best
fit, accounts for 99 percent of the variance of the given proximity data.
(Actually, however, because so many of the S-values are essentially
zero, this is somewhat less impressive than the 99.4 percent reported
in connection with Fig. 4.2.)

Further evidence for the validitiy of such a spatial representation
can be sought in its relations with other, external variables. In this
connection, it should be noted that it is only the internal structure of
the configuration itself that is uniquely determined by the data; the
orientation of the recovered configuration with respect to the reference
axes is wholly arbitrary. There is, therefore, no reason to suppose that
any given external variable (such as the physically measured frequency
of a particular formant) will be especially related to the projections

N

Fig. 4.3. Three-dimensional
spatial representation for 10
vowel phonemes (based on
the data of Peterson and
Barney).
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Fig. 4.4. Goodness of fit of the confusion data for 10
vowels to an exponential decay function of interpoint dis-
tance in the three-dimensional representation of Fig. 4.3.

xix of the recovered points on any one reference axis k. This consider-
ation has often been overlooked in interpreting multidimensional scaling
solutions (e.g., see Ref. 35). Actually, for the purpose of interpretation,
it is quite permissible—indeed preferable—to seek for each such external
variable a new axis on which the projections of the points are optimally
correlated with that variable [36, 37].

In general, of course, to provide a specification of a speech sound
that is complete physically would require a very large number of param-
eters. Even if we disregard phase relations, we would still need to
partition the time-frequency plane into a vast number of small compart-
ments and then specify the amount of acoustic energy contained within
each such compartment. In the case of vowels, however, it is only
the center frequencies of the lowest two or three formants (peaks in
the energy spectrum) that have been thought to be critical psychologi-
cally—ie., for recognition (see, e.g., Refs. 38 and 39). Accordingly,
the method reported by Miller, Shepard, and Chang [37] was used
to find three new axes through the configuration shown in Fig. 4.1 such
tl?at each would best agree with the average center frequency of a
different one of the first three formants of these vowels as measured
by Pe.texson and Barney [34, table 1I]. In the average formant fre-
quencies used for this purpose, the values given by Peterson and Barney,
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separately, for each of their three types of speakers (viz., men, women,
and children) were weighted according to the number of each type
in their total sample of 76 speakers (viz., 33, 28, and 15, respectively ).

The resulting product-moment correlations with the projections on
the new, rotated axes were .88, .98, and .82 for the first, second, and
third formants, respectively. As is to be expected, these relations be-
tween the purely physical variables and the recovered psychological
structure were appreciably nonlinear. To this extent, the true strengths
of these relations are even greater than indicated by the obtained linear
correlations.

The angles between the new directions corresponding to these three
formants were 99° for one and two, 104° for one and three, and 49°
for two and three. That the first axis is nearly orthogonal (close to
90°) to the other two indicates that the psychological effect of the first
formant is nearly independent of the other two. The substantially
smaller angle between the second and third directions, on the other
hand, suggests that the psychological effects of these two higher formants
are to some extent interdependent.

In Fig. 4.3 the three-dimensional configuration is pictured as viewed
normal to the plane of the first two rotated axes. Indeed, horizontal
and vertical axes through the pictured structure would, as nearly as
possible, agree with the frequencies of the first and second formants,
respectively. This is why the picture reproduces something resembling
the traditional “vowel loop” (starting with the “high front” vowel /i/
at the upper left and proceeding around the U-shaped curve through
the “lower” vowels at the right and back to the “high back” vowel /u/
at the lower left). The rotated axis that best relates to the frequency
of the third formant points both away (into the depth of the picture)
and upward (since it is also correlated with the second).

Because the 10 recovered points fall roughly on a U-shaped “loop”
and because the axes corresponding to the second and third formants
are appreciably correlated, a good approximation to the original data
can also be achieved in a reduced space of just two dimensions. In
fact, 97 percent of the variance of the given S-values can still be
accounted for by the best-fitting two-dimensional solution. In appear-
ance this reduced configuration is rather similar to the projection of
the three-dimensional configuration on the plane of the first
two axes. That is, it is not very different from the pattern already
shown in Fig. 4.3—but with all ten spheres reduced to the same size.

In either case, a rather clear relationship emerges between certain
physica]ly measured properties of these stimuli and a “psychological”
structure that was obtained entirely independently of those physical
measurements. The existence of this relationship provides a different
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kind of support for the psychophysical notion that it is the frequencies
of the first three formants—and particularly of the first two—that are
critical for the identification of spoken vowels. At the same time, it
furnishes further evidence of the validity of such spatial representations
of psychological structure.

Hierarchical Representation of Confusion Data
by Cluster Analysis

The representation of stimuli as points in an underlying continuous space
seems particularly natural when the psychologically relevant physical
variables are themselves inherently continuous, as in the case of the
formant frequencies of the vowels. In cases of this kind there is reason
to suppose that the psychological space is a continuous (and probably
differentiable) deformation of the space defined by the basic physical
variables [30, 31]. It is therefore understandable that, when we have
recovered such a psychological space, the existence of relevant and
measurable physical variables can, as in the case of the vowels, greatly
facilitate the interpretation of that space.

Sometimes, however, as in the case of the consonants, we do not
yet have a good hold on the relevant physical variables. Perforce, in
attempting interpretations of any psychological structure that may be
recovered in this latter case, we tend to fall back on the traditional
“distinctive features,” which (like the earlier linguistic classifications
of vowels as “high” or “low” and “front” or “back”) derive more from
qualitative considerations of how these sounds are articulated by the
speaker than from quantitative measurements of how the resulting
acoustic wave actually strikes the ear of the listener. Moreover, each
s'uch distinctive feature, being merely qualitative, defines not a quantita-
tlve' spacing of the consonants on some underlying continuum but only
a discrete classiﬁf:aﬁon in'to two (or sometimes three) separate groups.

In cases of this type, it is not wholly obvious that the most valid
ps_vchological representation of the stimuli will be as points in a con-
tinuous space. Perhaps, instead, they should simply be represented as
grouped into a .certain number of discrete “clusters,” each of which -
Tcﬁ:g?ntg};gse;:ﬁliﬂ:i jlrf most frequently confused with each other.
does achie'v’e a vclusterin reo entort d generfll type of method that
it divides the stimuli ngt Ol)lrfts?ntahon of this genera_l sort. In fact
and sub-subcluston z:lccordi: }tmgx‘ clusters, bl}t also.mto subclusters
best agrees, in a cel:tain sensegw?th t;t Ovel‘ﬁfﬂ hlerarchlca‘l Schome ﬂ'lat
measures S, us & whele e matrix of symmetrized confusion

Pictorially, the recovered hierarchical clustering takes a form that is
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known among combinatorial mathematicians as a “rooted tree.” The
stimuli, instead of appearing as points in a continuous space, now appear
as the discrete, terminal nodes of their associated tree. The inclusion
relations among the clusters and subclusters of these stimuli are repre-
sented by the way in which the branches of the tree converge from
these terminal nodes toward the base or “root.”

Interestingly, one method for yielding this sort of representation was
proposed over 20 years ago for application to problems of biological
taxonomy [5, p. 181; 40]. However, the present exposition and results
are based on a more elegant formulation and computer algorithm re-
cently developed at Bell Laboratories by S. C. Johnson [41].
Actually, Johnson’s general approach (which is based on the unifying
concept of an “ultrametric”) subsumes two somewhat different methods:
one that constructs clusters that are in a certain well-defined sense
optimally “compact,” and another that constructs clusters that are in
a similar sense optimally “connected” (i.e., free of gaps). Here, how-
ever, we shall be concerned with only the former (“compactness”)
method. So far that method has seemed to provide the most uniformly
interpretable results in the analysis of data on confusions among speech
sounds.

The type of tree representation recovered by this method is best
explained by reference to a specific example. Figure 4.5, then, presents
the structure that was recovered when Johnson's program was applied
to the matrix of S-values already computed from Miller and Nicely’s
[33] data and presented in Table 4.1 above. The 16 consonants are
listed across the top of the tree. At that level, each stimulus is regarded
as constituting its own separate “cluster.” But as we move down
through the tree, what were previously separate clusters successively
join together to form fewer, larger clusters until we finally reach the
base of the tree, where all 16 stimuli have finally merged into one grand
cluster.

Any horizontal section through this tree defines a particular partition-
ing of the 16 stimuli into a certain number of mutually exclusive and
exhaustive classes. Moreover, the total system of distinct classifications
obtained by taking such sections at all possible levels in the tree is
necessarily strictly hierarchical in the sense that classifications can always
be obtained, at any higher level, merely by splitting and, at any lower
level, merely by combining the component classes or “clusters.”

Figure 4.5 has been constructed such that the precise height at which
any particular cluster splits into two or more branching subclusters (as
indicated by the numerical scale at the left of the tree) reflects the
internal cohesiveness or “strength” of that particular cluster. Trees
constructed with this feature have sometimes been called “dendrograms”
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Fig. 4.5. Hierarchical clustering representation for 16 consonant

phonemes (based, again, on the pooled data from Miller and
Niceley’s six “flat” conditions).

{5, 42]. In the present application, the numerical strength of any
cluster is always the smallest S-value for any pair of stimuli included
in that cluster. It thus corresponds, in a sense, to the weakest link
holding that cluster together.

The algorithm for finding such a representation is quite simple. At
each stage of the process, any two (or more) objects that are connected
by the largest remaining value in the S-matrix are simply combined
into a new object or “cluster.” A new S-matrix is then constructed

for the reduced set of objects in which the S-value connecting a

new, combined object to any other object is defined to be the smallest
of the S-values that previously

connected the components of this
new object to that other, external object. The process is then repeated
until (after not more than 5 — 1 stages) all n of the original objects
have been incorporated into one final object. The resulting overall
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hierarchical scheme has the property that, for the clustering defined
by the horizontal section corresponding to a specified number of clusters,
the within-cluster S-values are all kept above the highest possible
bound. Since the S-values are inversely related to “ultrametric” dis-
tances [41], this amounts to minimizing the “diameters” of the clusters
and hence to maximizing “compactness.”

The resulting hierarchical clustering (as it is revealed in the topologi-
cal structure of the tree) is strictly invariant under monotonic trans-
formations of the given S-values. The numerical values of the clusters
as reflected in the vertical heights of the branch points, however, do
not possess this degree of invariance. Still, we usually have some con-
fidence in more than just the rank order of the given values of S; and,
to this extent these S-values can guide us in selecting particular
horizontal sections through the tree. Certainly, the clustering associated
with a cut (at .34 in Fig. 4.5) that just leaves /g/ and /d/ clustered
while just separating /3/ from /v/ would not be very reliable. The
most stable clusterings would be those resulting from a cut (like that
shown at .2) that can be moved up and down over an appreciable
range without changing the clustering.

For some purposes it is convenient to plot the numerical values asso-
ciated with different cuts through the tree as a function of the number
of resulting clusters, as shown in Fig. 4.6. Here, the more reliable

Smallest S value within a cluster
~n
T
{

O v vy
5 14 13 12 1 100 9 8 7 6 5 4 3 2 1

Number of clusters
Fig. 4.6. Dependence of the smallest level of confusion within

a cluster upon the number of clusters (for the pooled data from
the six “flat”” conditions).
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clusterings correspond to points on this graph immediately followed
by an abrupt drop in the curve. Thus we see, for example, that the
division of the 16 consonants into 11 clusters is probably more reliable
than their division into 10 clusters.

Combined Hierarchical-Spatial Representation and
Its Relation to Distinctive Features

Figure 45, despite its radically different appearance from Fig. 4.3,
actually contains much of the same information. The consonants /p/
and [k/, for example, are first to join in Fig. 4.5 and are also closest
together in Fig. 4.3. Next comes the pair /f/ and /0/ in both figures.
Likewise, at a level near the bottom of the tree we find a division into
the three major groups already noted in Fig. 4.3; namely, the groups
/ptkfdsf/, /bdgvdzs/, and /mn/, which are distinguished solely on the
basis of voicing and nasality.

That this agreement holds up throughout the whole hierarchical struc-
ture can be verified by representing that structure on top of the earlier
spatial solution itself. This has been done in Fig, 4.7 by drawing closed
curves around those points (of the earlier Fig. 4.3) that are grouped
together by taking horizontal slices through the tree (in Fig. 4.5). In

Fig. 4.7. Combined

(in which the hierarchical clusters of Fi
( ; ig. 45 a
into the spatial configuration ot Fig. 4.1)g. e embedded

spatial and hierarchical representation
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order to keep the combined figure from becoming too crowded with
these added curves, the horizontal slices have been taken only at certain
representative heights; specifically, at the geometrically decreasing levels
4, .2, 1, .05, and .025 (as indicated by the dashed lines in Fig. 4.5).

The lowest level (.025) divides the consonants into just the three
major clusters indicated by the three outermost curves. The next level
(.05) then subdivides the consonants into the five clusters indicated
by the five curves just inside the earlier three. Finally, for the highest
level (4), there are 14 separate clusters indicated by the 14 innermost
curves, and only the pairs /pk/ and /f8/ still remain enclosed together.
The overall agreement between the spatial representation and the hier-
archical clustering consists in the fact that points that are enclosed
together within more curves are generally closer together too. It is
this fact, of course, that permits these curves to assume such simple,
convex forms.

By embedding the hierarchical clustering scheme within the two-
dimensional spatial solution in this way, we obtain a picture that seems
particularly revealing of the underlying structure of the original con-
fusion data. Certainly Fig. 4.7 is more immediately informative than
the matrix of numerical data with which we began (Table 41). More-
over, the two types of representations that have been combined in Fig.
4.7 are to some extent complementary. The spatial representation con-
tains some information that is not preserved in the hierarchical cluster-
ing, e.g,, that within the cluster /bvd/ it is /v/ and /3/ that are closest
to the nearby cluster /z3/. The clustering, on the other hand, may
be more readily related to other discrete classifications such as those
based upon the traditional distinctive features. (Then, too, the cluster-
ing solution can serve as a partial confirmation that the spatial solution
corresponds to the absolute optimum, not just to one of several merely
local optima.)

An important feature of Fig. 4.7 is that it was obtained solely on
the basis of the empirical data (Table 4.1). We have not, that is,
provided any opportunity for theoretical preconceptions about the stfuc-
ture or grouping of these 16 consonants to insinuate themselves }nto
the final picture. This approach is, in this sense, purely psychological.
It differs from more psychophysical approaches, in which one starts
with a definite preconception as to what variables are relevax.lt and then
tries to quantify the relation of the data to just these variables.

Miller and Nicely [33], in particular, began with a system of five
distinctive features ( voicing, nasality, affrication, duration, and place
of articulation), and then analyzed their data speciﬁcally with respect
to these five variables. This approach did enable them to assess the
relative importance of each of these five variables in accounting for
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the confusion data. But as we shall see, it did not provide a very
sensitive test of possible departures of their data from the structural
requirements of their distinctive-feature system as a whole.

Figure 4.8 is a pictorial representation of the particular system of
distinctive features considered by Miller and Nicely [33]. The three
orthogonal dimensions of either the upper or the lower rectangular box
are used to distinguish the consonants with respect to the three features
of voicing, affrication, and place of articulation. The further feature
of nasality, then, is encoded in the separation of the upper from the
lower box. The final feature, duration, is not explicitly represented
in the picture. It simply distinguishes the four “longer” fricatives
/s[z3/, at the lower front corners of the box, from the other 12 con-
sonants. (Without this last feature there would, of course, be no basis
for distinguishing /8] from /s/ or /8] from /z].)

This particular system of distinctive features is just one of several
that have been proposed for the consonants. Halle [43], for example,
has advanced a system of eight features that are all purely dichotomous,
while Wickelgren [44] has advocated a system of only four features
that, however, can take on as many as four values on one feature
(place). Nevertheless, these three systems are essentially alike in the
properties that will be of primary interest here, They all distinguish
the consonants in exactly the same way with respect to voicing and
nasality and share the further important property of a complete struc-

tural parallelism between the unvoiced consonants /ptkfos// and their

corresponding voiced analogs /bdgvdzs/. That is, for each consonant

PLACE

NASALITY

PLACE

Fig. 4.8 Representation of
the 16 consonants in terms
of five distinctive features.
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in the unvoiced group, the corresponding consonant in the voiced group
has exactly the same value with respect to all features except (of course)
voicing. In Fig. 4.8 this shows up in the isomorphism between the
arrangement of the unvoiced and voiced consonants on their two oppos-
ing faces of the lower box.

Let us turn then to a comparison of these common properties of the
various distinctive-feature systems with the independently determined
empirical structure exhibited in Fig. 4.7. There is, first of all, the impor-
tant agreement (already noted) between the unanimous classification of
these consonants on the basis of the distinctive features of voicing and
nasality and the clear-cut division of these consonants into the three
major groups shown in Fig. 47. On the other hand, the unanimously
postulated parallelism between the voiced consonants and their corre-
sponding unvoiced consonants does not hold up in this figure. Instead,
the unvoiced consonants tend to split into three rather strong subgroups
/ptk/, /£0/, and /s[/, whereas the corresponding voiced consonants tend
to split, quite differently, into a strong subgroup /bvd/ and a separate
group consisting of the two weakly linked subgroups /dg/ and /z3/.
None of the proposed distinctive-feature systems appear to provide any
basis for understanding why /b/ should group so strongly with /v/ and
/8], while /p/ groups equally strongly—not with /f/ and /8/—but with
/t/ and /k/.

Of course, no evidence has yet been adduced to show that the empiri-
cal groupings exhibited in Fig. 4.7 are statistically reliable. In the en-
suing sections, however, we shall find rather compelling evidence of
their reality in the fact that these same groupings emerge again and
again when the individual and independently collected confusion
matrices reported by Miller and Nicely are analyzed separately.

We seem to have, then, an empirical basis for constructing a classifica-
tory scheme for the consonants. In addition to its firmer foundation
in data, such a scheme would come closer to representing these sounds
as they are actually heard by a listener (rather than as they are thought
to be articulated by a speaker ). Presumably, such a listener-oriented
scheme would be more useful for attempts to build automatic devices
for the recognition of speech or for the compression and transmission
of speech.

Effect of Variations in Signal-to-Noise Ratio

Figure 4.7 was based on the pooled data for the first six of Miller and
Nicely’s 17 different conditions. Since these first conditions differed
only with respect to signal-to-noise ratio, it is of some interest to analyze
the data for each condition separately and, thus, to determine the effect
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Fig. 4.9. Dependence of the smallest fevel of confusion
within a cluster upon the number of clusters, plotted
separately for each of the six “flat” conditions. (Miller
and Niceley, tables 1-V1.)

of that variable on the pattern of the resulting confusions. As a first
step toward this end, Johnson’s clustering algorithm was applied to a
matrix of S-values (like the present Table 4.1) computed separately
for each of Miller and Nicely’s Tables I through VI.

Figure 4.9 includes, for each of the six resulting clustering solutions,
a curve of the type previously introduced in Fig. 4.6. The curves show
how the level of confusion within clusters (the smallest within-cluster
S-value) decreases as the clusters are merged into fewer and fewer
clusters. The signed number over each curve indicates the S/N ratio
of the condition to which that curve applies. Naturally, lower S/N
ratios lead to higher frequencies of confusion and hence to higher curves.

Now an informative way of looking at the clustering results is to
specify some fixed level of confusion and then look at the clustering
defined by the slice through each of the six trees at that specified level.
For this purpose, the S-value of .17 (indicated by the horizontal dashed
line in Fig. 4.9) seemed to establish a level with two desirable proper-
tes: (1) it cuts through as many of the six curves as possible, and
yet {2) it cuts through each at a point of relatively abrupt decline
in that curve. We can see from the figure that, at the S/N ratio of —18
dB, the curve remains above a confusion level of .17 even when



Psychological Representation of Speech Sounds 91

we get down to a single cluster; evidently all 16 consonants are confused
with each other at this level. Under the optimum condition of +12
dB, at the other extreme, we find that there are 15 different clusters
that can be distinguished from each other at this level. (Ouly /f/ and
/6/ are still confused with an S-value of .17.)

The specified level of .17 thus defines six distinct clusterings—one
for each of the six S/N conditions. Given a spatial representation of
the consonants as 16 points in a plane, then, we can embed any or
all of these six clusterings in this plane in the manner previously il-
lustrated in Fig. 4.5. Perhaps the most reasonable spatial representation
to use for this purpose is the one that was based on the combined
data for all six conditions; that is, the one already presented in Figs.
4.1 and 4.5. This has been done in Fig. 4.10 where the signed number
associated with a closed curve designates the S/N ratio of the condition
upon which that curve is based. Thus for —18 dB, all 16 consonants
form one confused group, as we already noted. For —12 dB, then,
this group divides into five different groups that can be discriminated
from each other at the specified level (.17), and so on for the higher
S/N ratios.

Fig. 4.10. Representation of the effect of S/N ratio on con-
fusion among the 16 consonants. For each of the six S/N
conditions, a closed contour has been drawn around those
foints in Fig. 4.1 that represent consonants that were con-
used together at the criterion level of .17.
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This combined picture reveals a gratifying degr.ee of C(msistcncy' in
Miller and Nicely’s data, for in this figure the dl.Herent curves (1.e.£
curves for different S/N ratios) are based upon mdep?ndm?t sets 0
data. One consequence is that Fig. 4.10—unlike the earlier Fig. 4.7—is
not necessarily constrained to a hierarchical pattern. It could, for teli(/
ample, happen that the cluster /£0/ would group with the cluster é ph_
at —12 dB, but would group with the cluster /sf/ at —6 dB. 1 tulS
happened, Fig. 4.10 could not be constructed with0u.t one curve actléa ty
cutting across another. It is the remarkable consistency of the data
obtained under the different S/N ratios that permits the curves to assume
this strictly nested or hierarchical structure. "

This in turn permits us to think of these curves as level curves }1 e
the elevation contours on a topographical map. Concretely, we might
think of the 16 consonants as situated at the lowest points of 16 depres-
sions in an uneven terrain. Added noise, then, might picturesquely
be likened to muddy water welling up in these depressions. As we
infuse more and more noise, more and more of the previously separate
puddles lose their identity by merging into fewer, larger pools. At
—12 dB just five separate “pools” (i.e., distinguishable sounds) are left;
and at —18 dB everything has finally run together, so to speak, in
one big muddy confusion.

An even more striking demonstration of the consistency of the data
is afforded by taking vertical rather than horizontal cuts through the
six curves in Fig. 49. Whereas a horizontal cut corresponds to a fixed
level of confusion (or S-value), a vertical cut corresponds to a fixed
number of clusters, We can, that is, move down each hierarchical tree
until we find the consonants grouped into some prespecified number
of clusters and then see just what those clusters are. In the present
case, cuts of this sort were taken at both five and six clusters, as indicated
by the two vertical dashed lines in Fig. 49. We shall not consider
the two most extreme conditions in any detail; at 412 dB there are
insufficient confusions to define a grouping into fewer than eight clusters,
and at —18 dB the data are to nearly random to define any very

stable groupings. For all four of the intermediate conditions (—12,
—6, 0, +6 dB), however, the data are completely consistent. In each
case the grouping into five clusters leads to exactly the same five
clusters. These are indicate

d by the dashed curves in Fig. 4.11.
Moreover, in all four cases, the change from five to six clusters comes
about bv a split of the same cluster, /ptkf8/, into the same two sub-
clusters, /ptk/ and /£0/, as indicated by the solid curves in the figure.
Evidently the patterns to which attention was called in the earlier Fig,
4.7 are indeed reliable,

Indeed, although the 4-12-dB condition did not lead to enough con-
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fusions to define fewer than eight clusters, the eight-cluster solution for
that extreme condition is completely consistent with the six-cluster solu-
tions exhibited in Fig. 4.11 and, in fact, can be derived from that six-
cluster pattern merely by splitting /[/ off from the cluster / sf/ and by
splitting /3/ off from the cluster / dgzz/. Hence, /bvd/ emerges once
again as a coherent grouping. Even in the almost random data of the
very noisiest, —18-dB condition, /b/ was more often confused with /v/
than with any other phoneme. This initially unexpected grouping of
the voiced stop /b/ with certain voiced fricatives rather than with the
other voiced stops has thus recurred, now, in each of Miller and Nicely’s
first six independent sets of data.

The remarkable regularity summarized in Fig. 4.11 has an interesting
consequence. It suggests that, although S/N is a powerful determiner
of overall level of confusion (as indicated in the overall heights of the
curves in Fig. 4.9), it has little or no effect on the internal pattern
of confusion, for over a range from —12 to +6 dB we find that the
consonants that are most confused together constitute exactly the same
groups; and this is true even though the absolute level of confusion
associated with these groups changes over a 50-fold range from .352

-

~

Fig. 4.11. Representation of the invariance of the pattern
of confusion over different S/N ratios. The broken con-
tours represent the five-cluster solutions and the solid con-
tours represent the six-cluster solutions for all but the most
extreme S/N conditions.
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(for six groups at —12 dB) to .006 (for the same.six group]s. at 1;{;6
dB). The strictly nested pattern of the contours in the earlier Fig
410 (for all six S/N conditions) can of course be addflced, too, as
evidence for such an invariance under wide shifts in §/N ratio. .

This same invariance can also be demonstrated by obtaining a spahfﬁ
solution like that already shown in Fig. 4.1—but for each of the su;
S/N conditions separately. For this purpose the assur'ned f%xponentla
relation between probability of confusion and interpomt‘ distance has
the nice property that the “slope” parameter b enters into a purely
symmetric, multiplicative relation with the distances D;;. Thus we are
free to fix b at any arbitrary value (e.g., unity), and differences in
overall level of confusion should then be accommodated merely by
changes in the overall size of the resulting spatial configuration. .

Essentialy, this is what in fact happened when spatial solutions were
separately obtained for each of the individual matrices. For the w?rst
(—18-dB) condition, all 16 points were crowded together in one tight
littde clump.  With improvements in S/N, however, each consonant be-
came perceptually more distinct or “distant” from all others, and so the
16 points spread further and further apart. During this overall expan-
sion of scale, moreover, the relational structure (as defined by the rela-
tive distances among the 16 points) remained quite stable—at least
until 4-6 or 412 dB, (At these highest S/N, the spatial solution tended
to become somewhat indeterminate owing to the small number of non-
zero entries in the resulting confusjon matrices. )

In order to evaluate this conjectured invariance throughout the entire
range of S/N ratios, we evidently need more stable estimates of the fre-
quencies of confusion—particularly for the most dissimilar pairs at high
S/N. Toward this end, the 120 pairs of consonants were partitioned into
four groups on the basis of the S-measure previously computed for the
average data for Miller and Nicely’s Tables I through VI. The high-
similarity group contained the four pairs (/pk/, /18/, /dg/, and /v3/) of
highest average similarity (.250 < § <.500); the medium-high group
contained the nine pairs of next highest similarity (.125 < S < .250); the
medium-low group contained the twelve pairs of next highest similarity

(075 <'§ <.125); and, finally, the low group contained the remaining
95 pairs of lowest similarity (.000 < § < .075).

Figure 412 shows the mean S-value for each of these four groups
as computed for each of the six S/N conditions separately. As is to
be expected, the mean psycholo

gical similarity declines as S/N improves
for all pairs (whether of high or low average similarity). However,
the shapes of the curves for the four levels of average similarity are
quite different, and so the inv

ariance we are looking for is not very
evident in the untransformed S-measures of confusion themselves.
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Fig_. 4.12. Mean level of confusion (S) as a function of S/N ratio, for
pairs of consonants of low, medium-tow, medium-high, and high degrees
of simiiarity.

The spatial model, however, suggests that the invariance should
emerge in clearer form when the similarities are converted into dis-
tances. According to the exponential assumption, moreover, this is to
be accomplished by applying a logarithmic transformation to the empiri-
cal S-values. In particular, since the asymptote ¢ of the exponential
will generally be greater than zero [30], the desired distance estimates
should be computed as D = —log (S5 —¢). In the present case, if we
take ¢ = .0003, we find the kind of invariance we are looking for. Ap-
proximately, the distances for each S/N condition then differ from the
distances for any other S/N condition merely by a constant factor.
Indeed, as shown in Fig. 4.13, we can then find a slightly adjusted
spacing of the six S/N conditions such that, after the logarithmic trans-
formation, the four curves which in Fig. 4.12 were highly nonlinear
now radiate nearly linearly from an approximately common point (per-
haps somewhat to the left of —18 dB).

We seem to have, then, a possible way of separating the intrinsic
structure of the 16 consonants, which is reflected in the relational pattern
of the points, and the extrinsic effect of added noise, which is primarily
reflected in a compression of the overall scale of this pattern. The
possibility of such a separation undoubtedly depends upon the fact that
the noise added by Miller and Nicely was spectrally flat or “white.” By
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Fig. 4.13. The data of Fig. 4.12 logarithmically transformed
to reveal the invariance of structure {proportionality of
interconsonantal distance) over different S/N ratios.

choosing suitably band-limited noises one presumably could mask vari-

ous cues or features of these sounds differentially [2] and thus induce
nonscalar deformations of the spatial configuration.

Effects of Variations in Low-pass Filtering

The next six of the conditions reported by
designed to clarify the effects of flterin

The signal-to-noise ratio (before filtering) was fixed at +12 dB, and

a high-pass cutoff was maintained at 200 Hz. The low-pass cutoff, how-
ever, was varied and, in particular, took on values of 300, 400, 600,
1,200, 2,500, or 5,000 Hz

(in Miller and Nicely’s Tables VII through
XII, in that order).

Miller and Nicely [33] were
g out the higher frequencies.

Figure 4.14 is constructed in the same manner as the earlier Fig
4.9, but this time the number attached to each curve indicates the setting
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of the low-pass cutoff. As is to be expected, the overall level of confu-
sion is higher for conditions in which more of the high frequencies
have been filtered out. In order to see just how this filtering affects
the pattern of confusion, a cut has again been made through these six
curves at the same S-value (.17) used in Figs. 49 and 4.10. Fortu-
nately, except in the case of the highest of the six curves, this cut (which
is indicated by the horizontal dashed line in Fig. 4.14) again intersects
each curve at a point of comparatively sharp drop.

Again as in Fig. 4.10, the spatial solution originally obtained on the
basis of the first six matrices combined has been used as a framework
on which to display the six clusterings that result from this specified
level of confusion. The result is presented in Fig. 4.15. The picture
is slightly different from that obtained before for variations only in S/N
(Fig. 410) but, again, we find a perfect hierarchical nesting of the
contours. Under the worst of these six conditions (low-pass cutoff set
at only 300 Hz), only about four kinds of sounds can be discriminated
at the .17 level of confusion. Under the best condition (cutoff raised
to 500 Hz), as many as 14 consonants can be discriminated ( and con-
fusion at this level is now confined to just the two pairs /f6/ and /vi/).

The fact that none of these curves are forced to cross again points
to the consistency of the data. Even so, these data are not quite as
homogeneous as the data from the first six conditions. In particular,
there are indications of a qualitative change in the pattern of confusions

N WD N @™ w O

Smallest S value within a cluster

]51‘4131‘2H]lol98765432]
Number of clusters

Fig. 4.14. Dependence of the smallest leve! of confusion with-

in a cluster upon the number of clusters, plotted sepa_rately

for each of the six low-pass conditions. (Miller and Niceley,

tables VIL-XII.)
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Fig. 4.15. Representation of the effect of differential filter-
ing of high frequencies on confusions among the 16 con-
sonants. For each of the six low-pass conditions, a closed
contour has been drawn around those consonants that were
confused together at the criterion level of .17.

for the condition of severest filtering—in which the low-pass cutoft is
reduced to only 300 Hz. The three- and five-cluster representations
for just this one condition (Miller and Nicely’s Table VII) are exhibited
in Fig. 416. (These two clustering representations both correspond
to relatively sharp drops in S-value, as can be seen from the highest
curve in Fig. 4.14.)

This pattern, which resulted when only the very lowest frequencies
were transmitted, departs systematically from the pattern consistently
obtained under all conditions of relatively “flat” transmission of fre-
quencies (Fig. 4.11). Indeed, this lowest-frequency condition is the
only one of Miller and Nicely’s 17 conditions that yields a pattern in
close agreement with the distinctive-feature schemes discussed earlier.
As indicated by the labels added to Fig, 4.16, the clusters defined by
the confusions under this one condition are precisely what we should
expect on the basis of three of Miller and Nicely’s distinctive features,
viz., voicing, nasality, and affrication.

Of course, the spatial configuration (which was based on the six “fQat”
conditions) is not quite appropriate for the highly filtered condition.
(This is why the clusters in Fig. 4.16 tend to be long and parrow.) If
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a new spatial solution is obtained for just this condition, the clusters
assume the more compact form shown in Fig. 417. The fact that the
consonants are relatively undiscriminated within each of these five inner
clusters indicates that the remaining distinctive features (viz., place and
duration) tend not to be preserved when all but the lowest frequencies
are filtered out.

Even the remaining five of the low-pass conditions show some evi-
dence of qualitative changes in pattern. In any event, vertical cuts
(corresponding to fixed numbers of clusters) do not yield precisely the
same results for all conditions (as they did for the “flat” conditions
in Fig. 4.11). Still, certain of the clusters do recur in most or all of
the low-pass conditions. The most ubiquitous of these are shown in
Fig. 4.18. The numbers outside each contour indicate which of Miller
and Nicely’s conditions (VII through XII) yield that particular cluster.
Thus, for example, all five of these six conditions except VII led to
the cluster /bvd/, which has already been put forward as something
of a puzzle for traditional distinctive-feature schemes.

Generally, the pattern resulting from low-pass filtering is remarkably
like the pattern resulting from the addition of broadband noise (Fig.
4.11). (Indeed the only notable difference seems to be that /f/ and

~. " Unvoiced
,

Fig. 4.16. The three-cluster and five-cluster representations
for the condition in which only the lowest frequencies were
passed (embedded, again, in the spatial configuration of
Fig. 4.1).
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Unvoiced
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Fig. 4.17. The three-cluster and five-cluster representations
of Fig. 4.16 reembedded in a new two-dimensional spatial
representation based just upon the data from the condition
in which only the lowest frequencies were passed.
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Fig. 4.18. Recurrent clusterings in the low-pass conditions
(embedded, again, in the configuration of Fig. 4.1).
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/8/ group with the unvoiced stops /ptk/ in the “fat” conditions but
with the other unvoiced fricatives /sf/ in the low-pass conditions. )
Miller and Nicely also noticed the overall resemblance in the two patterns
of confusion and attributed it to the relatively greater susceptibility
of the high frequencies to masking by white noise [33, p. 350]. Such
a differential effect of white noise needs, however, to be reconciled

with the remarkable invariance in pattern already noted with changes
in S/N.

Effects of Variations in High-pass Filtering

The five remaining conditions studied by Miller and Nicely are con-
cerned with the effects of filtering out just the lower frequencies. Again
the signal-to-noise ratio (before filtering) was fixed at 412 dB. But
this tine a low-pass cutoff was maintained at 5,000 Hz, while a high-pass
cutoff took on values of 1,000, 2,000, 2,500, 3,000, and 4,500 Hz (in
Miller and Nicely’s Tables XIII through XVII, in that order).

Figure 4.19 shows the five resulting curves of the type displayed before
(in Figs. 4.9 and 4.14). As expected, the overall level of confusion
generally increases with the frequency of the high-pass cutoff. A hori-
zontal cut has also been made through these curves at the S-value
selected before (viz., .17). Conveniently, this again intersects most
of the curves at a point of relatively steep decline.

Smallest S value within a cluster

———d7
514 13121109 87 65 4 3 21
Number of clusters
Fig. 4.19. Dependence of the smallest level of confusion
within a cluster upon the number of clusters, plotted

separately for each of the five high-pass conditions.
(Miller and Niceley, tables X111-XVII.)
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In Fig. 4.20, as before, the spatial solution that was originally based
upon the pooled data for the first six conditions has been used as a
framework on which to display the clusterings corresponding to the
17 cut through Fig. 4.19. The contours for the least severely filtered
condition (Miller and Nicely’s Table XIIT) are not included in the fig-
ure. Generally, these omitted contours would fall inside the others.
However, as might be expected, the pattern for this nearly “fat” con-
dition departs somewhat from the pattern for the remaining, more se-
verely filtered conditions. At the .17 level of S, this discrepancy is con-
fined entirely to the occurrence of the two clusters /f0/ and /3z/ in this
relatively unfiltered condition.

With the exception of this one condition, however, Fig. 4.20 shows
that the contours for the high-pass conditions form a hierarchically
nested set. The pattern that thus consistently emerges for these high-
pass conditions nevertheless differs radically from the patterns noted
earlier for the flat conditions (Fig 4.10) and the low-pass conditions
(Fig. 415). This is further indicated by the most recurrent clusters,
‘}‘?’.hicil 1aSl'e represented in Fig. 421 in the same manner as in the earlier

ig. 4.18.

Regarding these high-pass conditions, Miller and Nicely remark that

Fig. 4.20. Representation of the effect i
' v of differential -
ing of low frequencies on confusions among 16 eon:onfai::sr.

For each of the five high- o
been drawn a:ou:lcel l?}%:;epass conditions, a closed contour has

conso
the criterion level of .17. nsonants that were confused at
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Fig. 4.21. Recurrent clusterings in the high-pass conditions.

“the errors do not cluster or fall into obvious patterns in the confusion
matrix, but seem to distribute almost randomly over the matrix” [33,
P- 350]. However, the present Figs. 4.20 and 4.21 do seem to reveal
some definite structure in these data. Roughly speaking, we might say
that, under the high-pass conditions, it is those consonants that are
separated horizontally in the figure that are most confused (e.g., /s/ and
/z/ or /{/ and /3/ in Fig, 4.21). Under the most extreme low-pass con-
dition, on the other hand, the prevalent confusions tended to run in a
roughly vertical direction (e.g., between /f/ and /f/ or between /v/ and
/3/ in Fig. 4.16). Thus we are led to the crude interpretative conjecture
that the vertical and horizontal dimensions of this space have, in part, to
do with discriminations among high frequencies and among low fre-
quencies, respectively.

Now voicing has been largely identified with the laryngeal injection
of low-frequency energy. So it is not surprising that, after the low
frequencies have been filtered out, the distinction of voicing is all but
lost for the fricatives (as shown by the strong pairings /60/, / sz/, and
/[3/ in Fig. 4.20). Note, however, that this distinction of voicing is
relatively much less dependent upon the presence of low frequencies
in the case of the stops. Here, then, we seem to find a further departure
from the kind of symmetry or parallelism that one tends to expect on
the basis of the traditional systems of distinctive features. Moreover,
we see (in Fig. 4.21) that whereas the unvoiced stops tend, as before,
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to group together (particularly /p/ and /k/), the voiced stop /b/ per-
sists in its closer association with the voiced fricatives (particularly /v/ ).
Actually, of course, the difficulty in accounting for these aspects of
the patterns in terms of distinctive features arises only to the extent
that we suppose, with Miller and Niceley [33, p. 348], that “the features
were perceived almost independently of one another” and, also, that
just these five features were operative. The absence of parallelism in
the structure of the voiced and unvoiced consonants (Figs. 4.11, 418,
and 4.21) could, for example, be explained by assuming, instead, that
whether the fricative-vs.-stop distinction or the place and duration dis-
tinctions take precedence critically depends upon whether the con-
sonants are unvoiced or voiced, respectively (cf. Fig. 4.8). Likewise,
the pattern in Figs. 4.20 and 4.21 could be explained by supposing
simply that the salience of the voicing distinction depends strongly upon
whether the consonants are stops or fricatives. The attractiveness of
an account of the confusion data in terms of distinctive features is,
however, somewhat reduced by the necessity of invoking such interactive
complications. Perhaps the simplest and most plausible way of explain-
ing both of these seeming anomalies in the confusion data is the one
suggested by Savin [45], in which we invoke—instead of interactions
among these five distinctive features—an additional, sixth distinctive
feature, aspiration, that arises only in the case of the three syllables
/ pa/., /ta/, and [ka/. Such a feature would certainly account for the
persistent grouping of the unvoiced stops /ptk/ even when there is
no parall'd grouping of the voiced stops /bdg/. At the same time,
since aspiration is represented in the higher frequencies, it would ac-
count for th'e tendency of the unvoiced stops /ptk/ to remain distinct
from the voiced stops /bdg/ even when the unvoiced fricatives /f0sf/
are no longer discriminated from their corresponding voiced fricatives

/vdzs).
. In a(r;y case, ’the pOinf should now be clear that it is potentially limiting
10 concuct one's analysis solely within the framework of any one particu-
i?]ix 12:1 igst(i): f:(a)mtlel\:fork of distincti\{e features. Sometimes it may prove
g to take, as an alternative starting point, a natural grouping

of the consonants (e.g, as in Fig. 4.11) d . H 8
by analysis of the empirical data,g 11) determined a posteriori, purely

Judged Similarities among Consona i
Relation to Confusion Dafa s and Their

So far here, we have exclusivel i .
) y considered, as a measure of psychologi-
C:;tlsllmnla;t)r, the frequency with which phonemes are actualll;' };Onfused
each other by human listeners. It is of course also possible to
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ask listeners to attempt direct subjective estimates of the similarities
of pairs of stimuli. Indeed, such an experiment has been done by Peters
[19] using, as stimuli, the same 16 consonants studied by Miller and
Nicely. Accordingly, some comparisons can now be made between the
patterns we have noted in the confusion data reported by Miller and
Nicely and whatever pattern may emerge from the judgmental data
subsequently collected by Peters.

In the experiment of interest here, Peters had each subject pronounce
each pair of consonants aloud and then rate the pair on a nine-point
scale ranging from 1 for “extreme similarity” to 9 for “extreme dissimi-
larity.” Each consonant was pronounced as followed by the vowel /a/.
Thus the subject would pronounce one of the 120 possible pairs, say
/pa-taf, and then write down a number from 1 to 9 to indicate the
apparent similarity (or dissimilarity) of the two consonants (e.g., /p/
and /t/). It may be a significant aspect of this procedure that the sub-
ject can respond to the consonants not merely as a listener (as in Miller
and Nicely’s experiments) but as a speaker as well.

For purposes of overall comparison, Johnson’s [41] clustering al-
gorithm was applied to the matrix of similarity estimates obtained simply
be averaging over all nine of Peters’ subjects.® Also, the spatial solution
originally obtained on the basis of Miller and Nicely’s “flat” conditions
(Fig. 4.1) is again used to display the resulting clusters. The most
salient of these have been included in Fig. 4.22. In this case many
widely separated points (like /t/ and /d/) are grouped tog?ther as
pairs. In order to simplify the picture such high-similarity pairs have
simply been connected by a single heavy line (rather than enclosed
in a surrounding curve, as before). ]

At the level of four clusters, we find the consonants neatly grouped into
the stops /p.tkb,d,g/, the sibilants /s,f,z,5/, the remaining fricatives
/£6,v,3/, and the two nasals /m,n/. Then, at the level of eight clusters,
we find that every voiced consonant is simply paired with its unvoic‘ed
counterpart, except for the two voiced nasals which (as in all earlier
solutions) remain grouped with each other. As the greatly elonngted
representations of these groupings attest, the pattern here bears little
resemblance to those found in the confusion data (except, perhaPS, for
the conditions of high-pass filtering, which did lead to such a horizontal
elongation in the case of the fricatives—but not the stops). . _

This marked disparity between the similarity and confusion data is
of some interest—particularly since earlier comparisons between the two
types of data with other types of stimuli have not revealed any such

® Peters’ published report does not include the matrices of .data upon \yhich
his analyses were based. I am grateful to him for genemusly malm?g these available
to me and thus permitting me to carry out the further analysis reported here.
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Fig. 4.22. Clusterings according to Peters’ data on judged
similarity of consonant phonemes.

discrepancy (e.g., Ref. 12, p. 515). In the present instance, the dis-
crepancy may in part be due to the difference, already noted, between
responding purely as listener and responding as speaker. However,
a somewhat different, more cognitive hypothesis also suggests itself.

First, however, with regard to distinctive features, Peters [19, p. 19891
concluded from his analysis of these data, “In general phonemes are
first sorted according to manner; voicing is next in importance, and
place, for some individuals, is also important.” The simplest interpreta-
tion of the very strong pairings evident in Fig. 4.22, however, seems
to be that the feature of voicing was, more than any other feature,
suppressed or ignored by these subjects. This is curious in view of
the fact that the confusion data clearly show voicing (and, probably,
nasality) to be the most easily discriminated of the distinctive features
(Fig 4.1).

One hypothesis that might explain this apparent suppression of the
usually salient feature of voicing in the judgmental task is that Peters’
subjects treated this task as an analogy task rather than a pure similarity
task. As an illustration of the kind of possibility being suggested here,
consider the 12 visual stimuli displayed in Fig. 423. Now the difference

betwe.en the black and the white figures shown is probably at least
as salient or discriminable as the differences among the various shapes.
Yet subjects who are asked to judge

the similarities among these figures
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might be most impressed by the parallelism
between the structure of the set of black fig-
ures and the structure of the set of white
figures. The fact, that is, that each black
figure has a perfect analog among the white
figures might lead them to discount the ob-
vious difference in color between the two
parallel sets and simply report that the black
triangle is most like the white triangle, and so
on for the other shapes.

There is, of course, no certainty that Peters’
subjects treated voicing in the way the hypo-
thetical subjects were just supposed to have
treated color. Still, the parallelism in the dis-
tinctive-feature structure of the voiced and un-
voiced consonants was probably apparent to
Peters” subjects. At least half of his subjects
had had some training in phonetics and, since
the distinctive-feature schemes are based pri-
marily upon the way the consonants are articu-
lated, the fact that the subjects pronounced
the phonemes themselves might tend to focus
their attention on the distinctive-feature struc-
ture of these phonemes.

In any case, the disparity between the pat-
terns observed in the two kinds of data argues
for considerable caution in generalizing from
subjective judgments of similarity to the con-
fusions actually made by listeners. Moreover,
the speculations as to the possible reason for
the observed disparity suggests that similarity
judgments may be quite sensitive to the par-
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Fig. 4.23. Twelve geome-
trical stimuli illustrating
an implicit  analogical
structure.

ticular types of instructions and training given to the subjects. The
primary advantage of subjective judgments of similarity, in the present
connection, is that they can be collected more rapidly than comparabl'y
stable confusion data. But they also have the disadvantage that their
relation to the basic processes underlying the identification of speech
sounds is, as we have seen, more tenuous and uncertain.

Conclusions

1. Computer algorithms of considerable elegance and power are now
available for converting patterns hidden in large arrays of empirical
data into a graphical form that is much more readily interpreted by

the human investigator.
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2 Speech sounds, in particular, can be represented as points in a
Fuclidean space in such a way that the frequency with which any two
phonemes are confused is, to a close approximation, a simple exponential
decay function of the distance between the two corresponding points
(Figs. 42 and 4.4).

3. Morcover, a computer algorithm designed to find the spatial con-
figuration that provides the best (cexponential) account of given confu-
sion data can provide useful information about the dimensions or fea-
tures of the phonemes that underlie the recognition of these speech
sounds by human listeners.  Since the spatial representation is based
solely upon the given confusion data, nothing need be known or assumed
about the number or nature of the relevant physical dimensions of the
phonemes. I short, the psvchological data are allowed to speak for
themselves.

4. Applications of this new method to the data of Peterson and Barney
[3] and of Miller and Nicelv [33] provided further support for their
carlier conclusions that the recognition of phonemes is heavily dependent
upon the frequencies of the first three formants in the case of the vowels,
and upon the features of voicing. nasalitv. and (to a lesser extent)
affrication in the case of the consonants ( Figs. 4.1 and 4.3).

5 Although the identification of a consonant has been thought to
require discriminations along as many as five different dimensions, 994
pereent of the variance in the confusion data can in fact be accounted
for on the basis of just two underlying dimensions ( Figs. 4.1 and 4.2).

8 With respect to such a two-dimensional representation obtained
on the basis of the broadband or “flat” conditions, the confusions under
the extreme high-pass conditions (Fig. 4.21) tended to extend across
the space at night angles to the confusions under the extreme low-pass
condition (Fig. 4.18). Hence the two dimensions of the spatial repre-
sentation mav be at least roughly interpreted as reflecting discriminations
among high and low frequencies. respectively.

+ Further insight can be gained by embedding, within the spatial
Y*‘Pff“-ﬂfntatxtvn. a hierarchical clustering of the kind Sgrensen [40]
orh g o s n o) oy nd oo 41
tional algonthm. Closed cg..mt mathematical rationale and computa-
that from mats “l IA ) curves are drawn am'und subsets of pf)m_ts

‘ wal clusters in the sense that all pairs of phonemes within

rm;h cluster exeend some criterion level of confusion (Fig. 4.7).
» Qm:;“f?“i;’:;:‘“:am ran_g:;il from —18 to +12 dB in Miller
v, bt the e p;.c:\('f :hlm'el of confus’ion also changed
level indicated that the intermal patter of fhe confonnD cach S/N
invariant  Figs 410 patiern of the confusions was essentially
pal and 411). Indeed. with respect to the spatial
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representation, the effect of adding a given amount of white noise
seemed to be almost entirely confined to a reduction of all interpoint
distances by the same, constant factor (Fig. 4.13).

9. The recurrent clusterings reveal a highlv' reliable difference in
structure between the unvoiced consonants and corresponding voiced
consonants. In particular, whereas /p/ alwavs groups with the other
unvoiced stops /t/ and /k/, /b/ groups— not with the other voiced
stops /d/ and /g/—but with the voiced fricative /v/ (in 15 out of
Miller and Nicely’s 17 conditions) and also /0/ (in 13 of these 15
conditions ).

10. Selective removal of the high frequencies did not have much effect
on the pattern of confusions until the high-frequency cutoff was lowered
to 300 Hz. Above that point the only reliable difference appeared o
be the tendency for /f/ and /0/ to group with the other unvoiced frica-
tives /s/ and /[/ rather than (as in the broadband conditions) with
the unvoiced stops /p/, /t/, and /k/ (Fig. 418). However. when only
the frequencics below 300 Hz were passed. the pattern of confusions
among the voiced consonants shifted so that. for the first and only time,
/b/ grouped with the other voiced stops /d/ and /g/ (Fig. 4.16).

11. Selective removal of the low frequencies, on the other hand.
produced a drastic alteration in the pattern of confusions as soon as
the low-frequency cutoff was raised as high as 1.000 Hz. When only
the frequencies above 1,000 Hz were passed. the distinction between
voiced and unvoiced consonants was largely lost for the fricatives but.
interestingly, was preserved for the stops (Figs. 4.20 and 4.21). '

12 The present findings of a lack of parallelism between the voiced
and unvoiced consonants (see point 9, above) and between the stops
and fricatives (see point 11, above) complicate attempts to ;u‘(mmj
for the confusion data in terms of the traditional “distinctive feature
schemes unless, perhaps. we include the additional distinctive feature
of aspiration in order to distinguish /p/. /t/. and /k/ from the other
consonants.

13. Direct judgments of similarity obtained by Peters [19] for a?!
pairs of the same 16 consonants conform to a pattern that departs radi-
cally from the patterns consistently found in the confusion data of Miller
and Nicelv. The fact that Peters subjects evidenth judged cach un-
voiced consonant to be most similar to its voiced counterpart (Fig,
422 suggests that certain cognitive processes (e.g. analogical reason-
ing) mav intervene in such judgmental tasks to alter the pattern from
that found in the frequencies with which listeners actually confuse these
phonemes. ’

14. Information gained in these ways about the patterns undl’ﬂ,‘""ﬂ
human confusions among speech sounds mav prove useful for enginecrs
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concerned with the development of devices for mechanical recognition
or for compression and efficient transmission of speech.

15. Finally, the methods for extracting underlying structure, applied
here primarily to data on auditory confusions among individual
phonemes, may also be applicable to other quite different problems
in communication science and technology. Some of the problems that
currently look amenable to this approach are the following: a parallel
study of visual confusions among printed letters or numbers [46, p. 90];
the study of semantic or associative structure [47, 48, 49], syntactic struc-
ture [50, 51], or, perhaps, the use of such structures for information stor-
age and retrieval (e.g., Ref. 52); the explication of the relations among
different languages [4, 53]; and the development of techniques for
evaluation of the subjective quality of speech transmitted over different
types of circuits [54, 55].

In the five years since this paper was completed, many of the possi-
bilities for application of these methods that were “only suggested in
the references listed here have been explored much more extensively.
However none of the subsequently published reports appears to alter
any of the results or conclusions presented in this chapter. There has
been one important methodological development that is directly related
to the material presented here. This is the perfection, by my former
colleague J. D. Carroll, of a powerful new method for the simultaneous
analysis of multiple matrices of the sort considered here [56] and, further,
the ins’tructive application of this new method to these very data by
Carroll’s present colleague, M. Wish [57]. By means of Carroll's new
method, Wish has been able to obtain a spatial representation for the
16 consonant phonemes with six distinct dimensions, which he has inter-
pfe}ed as “voiced versus voiceless,” “nasality,” “sibilant versus non-
51b11a:1t, “sibilant frequency,” “voiceless stops versus voiceless fricatives,”
i:}f‘\:“ }Slecc(:)nd' iormanF transition .after voiced consonants.” His results,

gh consistent with the findings presented here, help to bring out

some aspects of the underlying patterns in the data in an especially clear-
cut form.
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