February 8th
Probability for Linguists™

*with slides grabbed from Mark Paskin’s
Short Course on Graphical Models
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Probability spaces

e A probability space represents our uncertainty regarding an experiment.

e It has two parts:
1. the sample space €2, which is a set of outcomes; and

2. the probability measure P, which is a real function of the subsets of (2.

P

- PA) > R

e A set of outcomes A C () is called an event. P(A) represents how likely it is
that the experiment’s actual outcome will be a member of A.
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The only prerequisite: Set Theory

AUB ANB

A B A

B A

For simplicity, we will work (mostly) with finite sets. The extension to

countably infinite sets is not difficult. The extension to uncountably infinite sets
requires Measure Theory.

B
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Complex events

Let E be the number of raindrops, out of a four-drop spritz,
that land on the Righthand stone

A cC ()
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Second die

1 2 3 4 D 6

7 8 9 10 11 12

6 7 8 9 10 11

5 O 4 8 9 10

4 5 6 /7 8 9

3 4 5 6 7 8

2 3 4 5 6 v
2 3 4 5 6|7 8 9 10 11 12
i 1 1 i1 S5 |2 S5 4 L 4 L
36 18 12 9 3616 36 9 12 18 36

Figure 2.2 A random variable X for the sum of two dice. Entries in the body
of the table show the value of X given the underlying basic outcomes, while the
bottom two rows show the pmf p(x).
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You are my density

Probability mass function, probability density function, or just
“probability distribution” means the probability P(X = z) that
r.v. X takes on the value zx. Sometimes written f(x).

f(0)= P(E=0) = (1" or L or 0.0625

% or 0.25

P
=
||
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||
=
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f(2)= P(E=2) =3 or0.375

1% or 0.25

=
=
||
i
S
||
=
||

f(4)= P(E=4) = or 0.0625
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You have the same success prob,
every time

binomialprobability <- function(n,p,k){
choose(n, k)*pAk*(1-p)A(n-k)
5
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You are my CDF

The cumulative distribution function F'(x) for a r.v. X is
the probability that X takes on a value of x or less.

F(zx)=P(X < x)

J(x) F(x)
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An example probability space

e If our experiment is to deploy a smoke detector and see if it works, then
there could be four outcomes:

Q) = {(fire, smoke), (no fire, smoke), (fire, no smoke), (no fire,no smoke)}

Note that these outcomes are mutually exclusive.

e And we may choose:
— P({(fire, smoke), (no fire, smoke)}) = 0.005
— P({(fire, smoke), (fire, no smoke)}) = 0.003

e Our choice of P has to obey three simple rules. . .
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Conditional probability picture

Figure 2.1 A diagram illustrating the calculation of conditional probabil-
ity P(A|B). Once we know that the outcome is in B, the probability of A becomes
P(AnNB)/P(B).
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Independence example

1.43.

The probabilities that a husband and wife will be alive 20 years from now are given by 0.8 and
0.9, respectively. Find the probability that in 20 years (a) both, (b) neither, (c¢) at least
one, will be alive.

Let H, W be the events that the husband and wife, respectively, will be alive in 20 years. Then
P(H) =038, P(W)=0.9. We suppose that H and W are independent events, which may or may not be
reasonable.

(@) P(both will be alive) = P(H N W) = P(H)P(W) = (0.8)(0.9) = 0.72.
(b) P(neither will be alive) = P(H' N W') = P(H')P(W') = (0.2)(0.1) = 0.02.
(¢) P(at least one will be alive) = 1 — P(neither will be alive) =1 — 0.02 = 0.98.
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Independent?

Table 5.2. Numbers of monolingual or bilingual adults in two
hypothetical populations cross-tabulated by sex

Population A
Male Female Total
Bilingual 2 080 1920 4 000
Monolingual 2 880 6 ooo
e =0.6%0.52
5200 4 800 10 000
Population B
Bilingual 2 500 1 500 4 00G
Monolingual _ 3 300 6 ooo
 #0.6*0.4

5 200 4 800 10 000
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