February 17th estimators

Population

fixed-size samples
 $$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

Population

$$
\begin{aligned}
& \text { fixed-size } \quad \bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \\
& \text { samples }
\end{aligned}
$$

$$
=\bar{X}
$$

$$
=\bar{X}
$$

$$
=\bar{X}
$$

$$
\bullet \bullet \bullet \bullet
$$

$$
=\bar{X}
$$

Population

$$
\begin{aligned}
& \text { fixed-size } \quad \bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \\
& \text { samples }
\end{aligned}
$$

the sampling distribution of the sample mean

Expected value of \bar{X}

 in terms of the population$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

$$
\begin{aligned}
E[\bar{X}] & =E\left[\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right] \\
& =\frac{1}{n} \sum_{1}^{n} E\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{1}^{n} \mu \\
& =\frac{1}{n}(n \mu) \\
& =\mu
\end{aligned}
$$

Expected value of \bar{X} in terms of the population

$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

$$
\begin{aligned}
E[\bar{X}] & =E\left[\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right] \\
& =\frac{1}{n} \sum_{1}^{n} E\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{1}^{n} \mu \\
& =\frac{1}{n}(n \mu) \\
& =\mu
\end{aligned}
$$

unbiased estimator of population mean

Variance of the sample mean

$$
\begin{aligned}
\operatorname{Var}[\bar{X}] & =\operatorname{Var}\left[\frac{1}{n}\left(X_{1}+\ldots X_{n}\right)\right] \\
& =\frac{1}{n^{2}}\left(\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right]\right) \\
& =\frac{1}{n^{2}}\left(\sigma^{2}+\cdots+\sigma^{2}\right) \\
& =\frac{1}{n^{2}}\left(n \times \sigma^{2}\right) \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

Un-squared: the s.d.s.m

$$
\begin{aligned}
\operatorname{Var}[\bar{X}] & =\frac{\sigma^{2}}{n} \\
\sqrt{\operatorname{Var}[\bar{X}]} & =\sqrt{\frac{\sigma^{2}}{n}} \\
\sigma_{\bar{X}} & =\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

Quantify uncertainty in estimating population mean from sample mean

$$
\text { Statistic }=\text { Parameter }+ \text { error }
$$

or

$$
\text { Parameter }=\text { Statistic }+ \text { error }
$$

Quantify uncertainty in estimating population mean from sample mean

There is a probability p that the population parameter falls within the interval.

Figure 17 Schematic diagram of an interval estimate of a parameter.

Quantify uncertainty in estimating population mean from sample mean

$$
P\left(\mu \text { is in the interval } \bar{X} \pm 2 \times \sigma_{\bar{X}}\right)>0.95
$$

Quantify uncertainty in estimating population mean from sample mean

$$
\begin{aligned}
& P(\mu \text { is in the interval } \bar{X} \pm 2 \times\left.\sigma_{\bar{X}}\right)>0.95 \\
& \text { appropriate } \\
& \text { s.d.s.m } \\
& \text { for our sample }
\end{aligned}
$$

Vasishth 3.3

Probability that \bar{X} misses μ due to sampling error that is Z standard deviations big

$$
P\left(\mu \text { is in } \bar{X} \pm Z \sqrt{\frac{\sigma^{2}}{n}}\right)=?
$$

Claiming that μ is in $\bar{X} \pm Z \sqrt{\frac{\sigma^{2}}{n}}$ entails

$$
\begin{array}{cc}
\bar{X}-Z \sqrt{\frac{\sigma^{2}}{n}} & <\mu< \\
\bar{X}+Z \sqrt{\frac{\sigma^{2}}{n}} \\
\bar{X}<\mu+Z \frac{\sigma}{\sqrt{n}} & \vdots \\
\bar{X}-\mu<Z \frac{\sigma}{\sqrt{n}} & \vdots \\
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<Z & \text { and } \quad \frac{\mu-\bar{X}}{\sigma / \sqrt{n}}<Z
\end{array}
$$

The quantity

Theorem 5-5: Suppose that the population from which samples are taken has a probability distribution with mean μ and variance σ^{2} that is not necessarily a normal distribution. Then the standardized variable associated with \bar{X}, given by

$$
\begin{equation*}
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \tag{7}
\end{equation*}
$$

is asymptotically normal, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P(Z \leqq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u \tag{8}
\end{equation*}
$$

Lacking σ, we cannot compute
 $$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

We can compute $\frac{\bar{X}-\mu}{s / \sqrt{n}}$ using s, the sample standard deviation

Getting by without sigma

Standard error of the mean

$\mathrm{n}-1 \mathrm{df}$

```
degsfreedom <- c(1,2,3,4,5,6,7,8,9,10,15,20,50,100, 200)
tcolors <- rainbow(length(degsfreedom))
curve(dnorm(x),from=-4,to=4,col="black",lwd=6,ylab="t dist vs normal")
for (i in 1:length(degsfreedom)) {
    curve(dt(x,df=degsfreedom[i]),add=T,lwd=1,col=tcolors[i],xlab=c())
}
```


has a t-distribution of $\mathrm{n}-1$ df which asymptotically approximates the Normal


```
degsfreedom <- c(1,2,3,4,5,6,7,8,9,10,15,20,50,100,200)
tcolors <- rainbow(length(degsfreedom))
curve(dnorm(x),from=-4,to=4,col="black",lwd=6,ylab="t dist vs normal")
for (i in 1:length(degsfreedom)) {
    curve(dt(x,df=degsfreedom[i]),add=T,lwd=1,col=tcolors[i],xlab=c())
}
```

```
se <- function(x)
    {
                y <- x[!is.na(x)] # remove the missing values, if any
                sqrt(var(as.vector(y))/length(y))
}
ci <- function (scores){
m <- mean(scores,na.rm=TRUE)
stderr <- se(scores)
len <- length(scores)
upper <- m + qt(.975, df=len-1) * stderr
lower <- m + qt(.025, df=len-1) * stderr
return(data.frame(lower=lower,upper=upper))
}
```

```
se <- function(x)
    {
                y <- x[!is.na(x)] # remove the missing values, if any
                sqrt(var(as.vector(y))/length(y))
}
ci <- function (scores){
m <- mean(scores,na.rm=TRUE) 2.5%+2.5%=5% lnot iln the region
stderr <- se(scores)
len <- length(scores) = 95% Cl
upper <- m + qt(.975, df=len-1) * stderr
lower <- m + qt(.025, df=len-1) * stderr
return(data.frame(lower=lower,upper=upper))
}
```

