February 15th Expectation

Expectation

Suppose that a doctor get only two kinds of patients, those with insurance type `a' and one with insurance `b'. If a patient has insurance `a' the doctor gets 40 dollars per visit, if the patient is from insurance `b' he gets 55. Let INCOME be a random variable from the event space of insurance types to the space of dollars defined by f(A) = 40 and f(B) = 55. P(INCOME=a) is 1/3 and P(INCOME=b) is 2/3. How much money does the doctor get on average from every patient? The answer is

1/3 * 40 + 2/3 * 55 = 50

This value is known as the **expected value** or expectation of INCOME.

MEAN: the value of a random variable that you expect, on average

MEAN: the value of a random variable that you expect, on average

$$\mu_X = \sum_{\text{all possible values of } X} (\text{value of the R.V. } X) \times P(X)$$

 $\mu = E(X)$

Monday, February 15, 2010

Expectation Value

The expectation value of a function f(x) in a variable x is denoted $\langle f(x) \rangle$ or $E\{f(x)\}$. For a single discrete variable, it is defined by

$$f(x) = \sum_{x} f(x) P(x),$$
(1)

where P(x) is the probability function.

For a single continuous variable it is defined by,

$$\langle f(x)\rangle = \int f(x) P(x) dx.$$
(2)

The expectation value satisfies

$$\langle a x + b y \rangle = a \langle x \rangle + b \langle y \rangle$$

$$\langle a \rangle = a$$

$$\langle \sum x \rangle = \sum \langle x \rangle.$$
(3)
(4)
(5)

Expected word length

$E(LENGTH) = 3 \times 0.068$

 $+2 \times 0.035$ $+3 \times 0.0284$ $+2 \times 0.0257$ $+1 \times 0.0229$

Words listed by frequency: the first 2000 most frequent words from the Brown Corpus (1,015,945 words)

	Word	Instances % Frequency				
1.	The	69970	6.8872			
2.	<u>of</u>	36410	3.5839			
3.	and	28854	2.8401			
4.	<u>to</u>	26154	2.5744			
5.	<u>a</u>	23363	2.2996			
6.	<u>in</u>	21345	2.1010			
7.	<u>that</u>	10594	1.0428			
8.	is	10102	0.9943			
9.	was	9815	0.9661			
10.	He	9542	0.9392			
11.	for	9489	0.9340			
12.	<u>it</u>	8760	0.8623			
13.	with	7290	0.7176			
14.	<u>as</u>	7251	0.7137			
15.	his	6996	0.6886			
16.	<u>on</u>	6742	0.6636			
17.	<u>be</u>	6376	0.6276			
18.	<u>at</u>	5377	0.5293			
19.	<u>by</u>	5307	0.5224			
20.	Ī	5180	0.5099			

Linearity of Expectation

Linear Operator

An operator \tilde{L} is said to be linear if, for every pair of functions f and g and scalar t,

$$\tilde{L}(f+g) = \tilde{L}f + \tilde{L}g$$

and

$$\tilde{L}(tf) = t\tilde{L}f.$$

Monday, February 15, 2010

SOME THEOREMS ON EXPECTATION

Theorem 3-1: If c is any constant, then

$$E(cX) = cE(X) \tag{8}$$

Theorem 3-2: If X and Y are any random variables, then

$$E(X + Y) = E(X) + E(Y)$$
 (9)

Theorem 3-3: If X and Y are independent random variables, then

E(XY) = E(X)E(Y)(10)

First	Second die											
die	1	2	3	4	5	6						
6	7	8	9	10	11	12				elen aber - sok els m		
5	6	7	8	9	10	11						
4	5	6	7	8	9	10						
3	4	5	6	7	8	9						
2	3	4	5	6	7	8						
1	2	3	4	5	6	7						
x		2	3	4	5	6	7	8	9	10	11	12
$\mathbf{p}(X=x)$		$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Figure 2.2 A random variable *X* for the sum of two dice. Entries in the body of the table show the value of *X* given the underlying basic outcomes, while the bottom two rows show the pmf p(x).

cf. Johnson page 39

Variance, the expected squared deviation

Expected squared deviation is just E(X²) - (E(X))²

(130)
$$V(X) = E(X^2) - (E(X))^2$$

For a proof notice that

$$E(X - EX)^{2} = E(X - EX)(X - EX)$$

= $E(X^{2} - 2X \cdot EX + (EX)^{2})$
= $E(X^{2}) - 2E((EX) \cdot X) + (EX)^{2}$
= $E(X^{2}) - 2(EX)(EX) + (EX)^{2}$
= $E(X^{2}) - (EX)^{2}$

(131)

Expected squared deviation is just E(X²) - (E(X))²

(130)
$$V(X) = E(X^{2}) - (E(X))^{2}$$

For a proof notice that

$$E(X - EX)^{2} = E(X - EX)(X - EX)$$

$$= E(X^{2} - 2X \cdot EX + (EX)^{2})$$

(131)
$$= E(X^{2}) - 2E((EX) \cdot X) + (EX)^{2}$$

$$= E(X^{2}) - 2(EX)(EX) + (EX)^{2}$$

$$= E(X^{2}) - 2(EX)(EX) + (EX)^{2}$$

SOME THEOREMS ON VARIANCE

Theorem 3-4:
$$\sigma^2 = E[(X - \mu)^2] = E(X^2) - \mu^2 = E(X^2) - [E(X)]^2$$
(16) where $\mu = E(X)$.

Theorem 3-5: If c is any constant,

$$\operatorname{Var}\left(cX\right) = c^{2}\operatorname{Var}\left(X\right) \tag{17}$$

Theorem 3-6: The quantity $E[(X - a)^2]$ is a minimum when $a = \mu = E(X)$.

Theorem 3-7: If X and Y are independent random variables,

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \quad \text{or} \quad \sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 \quad (18)$

$$\operatorname{Var}(X - Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \quad \text{or} \quad \sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2 \quad (19)$$

SOME THEOREMS ON VARIANCE Theorem 3-4: $\sigma^2 = E[(X - \mu)^2] = E(X^2) - \mu^2 = E(X^2) - [E(X)]^2$ (16) where $\mu = E(X)$. Theorem 3-5: If c is any constant, $Var(cX) = c^2 Var(X)$ (17) Theorem 3-6: The quantity $E[(X - a)^2]$ is a minimum when $a = \mu = E(X)$. Theorem 3-7: If X and Y are independent random variables, Var(X + Y) = Var(X) + Var(Y) or $\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y$ (18) Var(X - Y) = Var(X) + Var(Y) or $\sigma^2_{X-Y} = \sigma^2_X + \sigma^2_Y$ (19)

n=5

B B B B B

•

average bitterness $\bar{X} = \frac{1}{5} \sum_{i=1}^{5} x_i$

n=5

the sampling distribution of the sample mean -

Monday, February 15, 2010