The ratio $M S_{\text {between }}$ to $M S_{\text {within }}$

The ratio $M S_{\text {between }}$ to $M S_{\text {within }}$

THE CHI-SQUARE DISTRIBUTION

Let $X_{1}, X_{2}, \ldots, X_{\nu}$ be ν independent normally distributed random variables with mean zero and variance 1. Consider the random variable

$$
\begin{equation*}
\chi^{2}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{\nu}^{2} \tag{38}
\end{equation*}
$$

where χ^{2} is called chi square. Then we can show that for $x \geqq 0$,

$$
\begin{equation*}
P\left(\chi^{2} \leqq x\right)=\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} \int_{0}^{x} u^{(\nu / 2)-1} e^{-u / 2} d u \tag{39}
\end{equation*}
$$

and $P\left(\chi^{2} \leqq x\right)=0$ for $x>0$.

The ratio $M S_{\text {between }}$ to $M S_{\text {within }}$

THE CHI-SQUARE DISTRIBUTION

Let $X_{1}, X_{2}, \ldots, X_{\nu}$ be ν independent normally distributed random variables with mean zero and variance 1. Consider the random variable

$$
\begin{equation*}
\chi^{2}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{\nu}^{2} \tag{38}
\end{equation*}
$$

where χ^{2} is called chi square. Then we can show that for $x \geqq 0$,

$$
\begin{equation*}
P\left(\chi^{2} \leqq x\right)=\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} \int_{0}^{x} u^{(\nu / 2)-1} e^{-u / 2} d u \tag{39}
\end{equation*}
$$

and $P\left(\chi^{2} \leqq x\right)=0$ for $x>0$.

Suppose $y_{1}, y_{2}, \ldots, y_{n}$ is a random sample from a Normal distribution with mean μ and variance σ^{2}. Then

$$
\frac{S S}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

The ratio $M S_{\text {between }}$ to $M S_{\text {within }}$

THE \boldsymbol{F} DISTRIBUTION

A random variable is said to have the F distribution (named after R. A. Fisher) with ν_{1} and ν_{2} degrees of freedom if its density function is given by

$$
f(u)= \begin{cases}\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \nu_{1}^{\nu_{1} / 2} \nu_{2}^{\nu_{2} / 2} u^{\left(\nu_{1} / 2\right)-1}\left(\nu_{2}+\nu_{1} u\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} & u>0 \tag{45}\\ 0 & u \leqq 0\end{cases}
$$

Percentile values of the F distribution for ν_{1}, ν_{2} degrees of freedom are denoted by $F_{p, \nu_{1}, \nu_{2}}$, or briefly F_{p} if ν_{1}, ν_{2} are understood.

Theorem 4-7: Let V_{1} and V_{2} be independent random variables that are chi square distributed with ν_{1} and ν_{2} degrees of freedom, respectively. Then the random variable

$$
\begin{equation*}
V=\frac{V_{1} / \nu_{1}}{V_{2} / \nu_{2}} \tag{48}
\end{equation*}
$$

has the F distribution with ν_{1} and v_{2} degrees of freedom.

Pitt \& Shoaf 2002

prime

Johnson divides up the data for us

$|$| $>$ | head(ps1) | |
| ---: | ---: | ---: |
| | subj position | rt |
| 1 | AALA | mid |
| 2 | 845 | |
| 3 | AAMS | late |
| 3 | 744 | |
| 4 | AING | mid |
| 5 | 804 | |
| 6 | AITT | mid |
| 625 | | |
| 6 | ALER | early |

Johnson divides up the data for us

$|$| $>$ | head $(p s 1)$ | |
| ---: | ---: | ---: |
| | subj position | rt |
| 1 | AALA | mid |
| 2 | 845 | |
| 3 | AAMS | ADAN |

Get the SS by multiplying by $n-1$

```
> tapply(ps1$rt,ps1$position,length)
early late mid
    31 33 32
> attach(ps1)
> var(rt[position=="early"])*(31-1) + var(rt[position=="mid"])*(32-1) + var(rt[position=="late"])*(33-1)
[1] 3136368
> length(rt) weighhted average of within-|eve| variance
[1] 96
> var(rt)*(96-1)
[1] 3483523
total variance across the whole experiment
```


Johnson divides up the data for us

$|$| $>$ | head $(p s 1)$ | |
| ---: | ---: | ---: |
| | subj position | rt |
| 1 | AALA | mid |
| 2 | 845 | |
| 3 | AAMS | ADAN |

Get the SS by multiplying by $n-1$

```
myvariance <- function(x) {
    n <- length(x); # to figure out what the mean is,
    xbar <- sum(x)/n; # we need to divide by the number of observations
    nminusone <- length(x) -1; # the degrees of freedom are one less
    sum((x-xbar)^2)/nminusone # divide sum of squared deviations by the degrees of freedom
    }
```

```
> tapply(ps1$rt,ps1$position,length)
early late mid
    31 33 32
> attach(ps1)
> var(rt[position=="early"])*(31-1) + var(rt[position=="mid"])*(32-1) + var(rt[position=="late"])*(33-1)
[1] 3136368
> length(rt) weighted average of within-|eve| variance
[1] 96
> var(rt)*(96-1)
[1] 3483523
```

total variance across the whole experiment

The treatment effect

$$
x_{i j}-\bar{x}=\left(\bar{x}_{j}-\bar{x}\right)+\left(x_{i j}-\bar{x}_{j}\right)
$$

347,155

$=3,483,523-3,136,368$

Acknowledge degrees of freedom

> msb <- 3136368 / (3-1)
$>$ msw <- 347155/ ((31-1)+(32-1)+(33-1))
> 1-pf(msb/msw,2,93)
[1] 0.007585556

How likely is this F-ratio?

```
> fitted <- aov(rt~position,data=ps1)
> anova(fitted)
Analysis of Variance Table
Response: rt
    Df Sum Sq Mean Sq F value Pr(>F)
position 2 347155 173577 5.1469 0.007586 **
Residuals 93 3136368 33724
Signif. codes: 0 ،***' 0.001 ،**' 0.01 ،*' 0.05 '.' 0.1 ' ' 1
```


Flynn \& Lust 80

Relative clauses

subject-extracted
(Gayle hates) the guy who telephoned Oprah
object-extracted
(Gayle hates) the guy who Oprah telephoned

Relative clauses

"free"
(I'll have) what he's having
lexically-headed (I'll have) the drink which he's having

Relative Types
Lexically Headed Relatives
I. Determinate Head
II. Non-determinate Head

Nonlexically Headed
III. Free Relative ("what")

Big Bird pushes the balIoon which bumps Ernie

Ernie pushes the thing which touches Big Bird

Cookie Monster hits what pushes Big Bird

Figure 1: Development of Imitation Success on 3 Relative Types Over 8 Age Groups

$3 \times 2 \times 8$

Relative clause Type had a significant effect on the success of children's imitations

$F(2,176)=7.49 p<.001$

Planned comparisons

$t^{2}=F$

t statistic is a ratio

\mathbf{t}^{2} is a ratio of chi-squared r.v.'s

