THE CHI-SQUARE DISTRIBUTION

Let $X_1, X_2, \ldots, X_{\nu}$ be ν independent normally distributed random variables with mean zero and variance 1. Consider the random variable

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_{\nu}^2 \tag{38}$$

where χ^2 is called *chi square*. Then we can show that for $x \ge 0$,

$$P(\chi^2 \le x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x u^{(\nu/2)-1} e^{-u/2} \, du \tag{39}$$

and $P(\chi^2 \leq x) = 0$ for x > 0.

THE CHI-SQUARE DISTRIBUTION

Let $X_1, X_2, \ldots, X_{\nu}$ be ν independent normally distributed random variables with mean zero and variance 1. Consider the random variable

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_{\nu}^2 \tag{38}$$

where χ^2 is called *chi square*. Then we can show that for $x \ge 0$,

$$P(\chi^2 \le x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x u^{(\nu/2)-1} e^{-u/2} \, du \tag{39}$$

and $P(\chi^2 \leq x) = 0$ for x > 0.

Suppose $y_1, y_2, ..., y_n$ is a random sample from a Normal distribution with mean μ and variance σ^2 . Then

$$\frac{SS}{\sigma^2} = \frac{\sum_{i=1}^n \left(y_i - \bar{y}\right)^2}{\sigma^2} \sim \chi_{n-1}^2$$

THE F DISTRIBUTION

1.0

A random variable is said to have the *F* distribution (named after R. A. Fisher) with ν_1 and ν_2 degrees of freedom if its density function is given by

$$f(u) = \begin{cases} \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} u^{(\nu_1/2) - 1} (\nu_2 + \nu_1 u)^{-(\nu_1 + \nu_2)/2} & u > 0\\ 0 & u \le 0 \end{cases}$$
(45)

Percentile values of the F distribution for ν_1 , ν_2 degrees of freedom are denoted by F_{p,ν_1,ν_2} , or briefly F_p if ν_1 , ν_2 are understood.

Theorem 4-7: Let V_1 and V_2 be independent random variables that are chi square distributed with ν_1 and ν_2 degrees of freedom, respectively. Then the random variable

$$V = \frac{V_1/\nu_1}{V_2/\nu_2} \tag{48}$$

has the F distribution with ν_1 and ν_2 degrees of freedom.

Pitt & Shoaf 2002

>	head(
	subj	position	rt
1	AALA	mid	845
2	AAMS	late	744
3	ADAN	mid	804
4	AING	mid	825
5	AITT	late	720
6	ALER	early	1179

```
Get the SS by multiplying by n-1
```

```
> tapply(ps1$rt,ps1$position,length)
early late mid
    31    33    32
> attach(ps1)
> var(rt[position=="early"])*(31-1) + var(rt[position=="mid"])*(32-1) + var(rt[position=="late"])*(33-1)
[1] 3136368
> length(rt)
[1] 96
> var(rt)*(96-1)
[1] 3483523
```

Wednesday, March 17, 2010

>	head(
	subj	position	rt
1	AALA	mid	845
2	AAMS	late	744
3	ADAN	mid	804
4	AING	mid	825
5	AITT	late	720
6	ALER	early	1179

```
Get the SS by multiplying by n-1
```

```
> tapply(ps1$rt,ps1$position,length)
early late mid
    31    33    32
> attach(ps1)
> var(rt[position=="early"])*(31-1) + var(rt[position=="mid"])*(32-1) + var(rt[position=="late"])*(33-1)
[1] 3136368
> length(rt) weighted average of within-level variance
[1] 96
> var(rt)*(96-1)
[1] 3483523
```

total variance across the whole experiment

>	head(
	subj	position	rt
1	AALA	mid	845
2	AAMS	late	744
3	ADAN	mid	804
4	AING	mid	825
5	AITT	late	720
6	ALER	early	1179

Get the SS by multiplying by *n*-1

myvariance <- function(x) {
 n <- length(x); # to figure out what the mean is,
 xbar <- sum(x)/n; # we need to divide by the number of observations</pre>

nminusone <- length(x) -1; # the degrees of freedom are one less sum((x-xbar)^2)/nminusone # divide sum of squared deviations by the degrees of freedom

```
> tapply(ps1$rt,ps1$position,length)
early late mid
    31    33    32
> attach(ps1)
> var(rt[position=="early"])*(31-1) + var(rt[position=="mid"])*(32-1) + var(rt[position=="late"])*(33-1)
[1] 3136368
> length(rt) weighted average of within-level variance
[1] 96
> var(rt)*(96-1)
[1] 3483523
```

total variance across the whole experiment

The treatment effect

 $x_{ij} - \bar{x} = (\bar{x}_j - \bar{x}) + (x_{ij} - \bar{x}_j)$

The treatment effect

 $x_{ij} - \bar{x} = (\bar{x}_j - \bar{x}) + (x_{ij} - \bar{x}_j)$

Wednesday, March 17, 2010

Acknowledge degrees of freedom

 $MS = \frac{SS}{df}$

- > msb <- 3136368 / (3-1)
- > msw <- 347155/((31-1)+(32-1)+(33-1))
- > 1-pf(msb/msw,2,93)
- [1] 0.007585556

How likely is this F-ratio?

Flynn & Lust 80

Relative clauses

subject-extracted (Gayle hates) the guy who telephoned Oprah

(Gayle hates) the guy who Oprah telephoned

Relative clauses

"free" (I'll have) what he's having

lexically-headed (I'll have) the drink which he's having

Relative Types

Lexically Headed Relatives

I. Determinate Head

II. Non-determinate Head

II. Non-decerminate nead

Nonlexically Headed

III. Free Relative ("what")

Big Bird pushes the balloon which bumps Ernie

Ernie pushes the thing which touches Big Bird

Cookie Monster hits what pushes Big Bird

Figure 1: Development of Imitation Success on 3 Relative Types Over 8 Age Groups

3x2x8

Relative clause Type had a significant effect on the success of children's imitations F(2,176)=7.49 p < .001

Planned comparisons

t statistic is a ratio $\frac{Z}{\sqrt{V/\nu}}$

t² is a ratio of chi-squared r.v.'s

Wednesday, March 17, 2010