Discrete Probability and Counting

A finite probability space is a set S and a function $p: S \rightarrow R_{\geq 0}$ s.t.:

- $p(s)>0 \forall s \in S$ and
- $\sum_{s \in S} p(s)=1$.

We refer to S as the sample space, subsets of S as events and p as the probability distribution. The probability of an event $A \subseteq S$ is $\sum_{a \in A} p(a)$. ($p(\emptyset)=0$.)

Example: Suppose we flip a fair coin. Saying the coin is fair implies that it is equally likely to flip H (heads) or T (tails) therefore $p(H)=p(T)=1 / 2$.

If we assign all elements of S the same probability, as in the example above, then p is the uniform distribution.

Example: Suppose we flip a biased coin where the probability of H is twice as much as the probability of T. Since $p(H)+p(T)=1$, this implies $p(H)=2 / 3$ and $p(T)=1 / 3$.

Example: Suppose we flip a fair coin twice. What is the probability of getting one H and one T ? All the possible outcomes are $\{H H, H T, T H, T T\}$. Two out of the possible 4 outcomes give us one H and one T, each outcome has probability $1 / 4$ therefore the total probability is $1 / 2$

Suppose we flipped a fair coin n times. How many possible outcomes are there? There are two choices for each flip of the coin, so there are 2^{n} possible outcomes. The probability of getting any one of these is $1 / 2^{n}$. (Where did we see this before?)

Now suppose we want to know the probability of getting exactly $k H$ s. We need to know how many of the 2^{n} strings have exactly $k H \mathrm{~s}$. In general, the number of ways to choose k things from n is given by:

$$
\binom{n}{k}=n!/(n-k)!k!
$$

Where $n!=n(n-1)(n-2) \ldots 1$ and is read n factorial. We define $0!=1$. Note that $\binom{n}{k}=\binom{n}{n-k}$. These numbers are known as the binomial coefficients. Consider $(x+y)^{2}=x^{2}+2 x y+y^{2}$. The coefficients of this polynomial are $\{1,2,1\}$ which are the numbers $\binom{2}{0},\binom{2}{1},\binom{2}{2}$. In general, $(x+y)^{n}=$ $\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}$.

Example: Suppose we flip a fair coin 10 times. What is the probability of getting exactly 4 Hs ? First we compute $\binom{10}{4}=210$. Then we compute the total number of outcomes $2^{10}=1024$. Therefore the probability of getting exactly $4 H$ s is $210 / 1024 \approx .205$

Two events are disjoint if their intersection is empty.
Example: In the example of flipping 2 coins, the event $A=$ 'getting exactly one H^{\prime} and the event $B=$ 'getting exactly $2 H$ s' are disjoint. But, A is not disjoint from the event $C=$ 'getting exactly one T '. In fact, events A and C are the same in this case.

In general we have: $p(A \cup B)+p(A \cap B)=p(A)+p(B)$. Therefore, for disjoint events we have: $p(A \cup B)=p(A)+p(B)$. The first statement follows from the principle of inclusion - exclusion which states that $|A \cup B|=$ $|A|+|B|-|A \cap B|$.

Example: Say we flip a coin 10 times. What is the probability that the first flip is a T or the last flip is a T ? The number of outcomes with the first flip T is 2^{9}. The number of outcomes where the last flip is a T is 2^{9}. The number of strings with both properties is 2^{8}. Hence, the number of strings with either property is $2^{9}+2^{9}-2^{8}=768$.

Suppose we know that one event has happened and then want to ask about another. For two events A and B, the conditional probability of A relative to B is $p(A \mid B)=p(A \cap B) / p(B)$ and read the probability of A given B.

Example: Suppose we flip a fair coin 3 times. Let B be the event that we have at least one H and A be the event of getting exactly $2 H \mathrm{~s}$. What is the probability of A given B ? In this case, $(A \cap B)=A, p(A)=3 / 8$ (why?), $p(B)=7 / 8$ (why?), and therefore $p(A \mid B)=3 / 7$.

Notice that the definition of conditional probability also gives us the formula: $p(A \cap B)=p(A \mid B) p(B)$. For three events we have: $p(A \cap B \cap C)=$ $p(A \mid B \cap C) p(B \mid C) p(C)$. (What is a general rule?)

We can also use conditional probabilities to find the probability of an event by breaking the sample space into disjoint pieces. If $S=S_{1} \cup S_{2} \ldots \cup S_{n}$
and all pairs S_{i}, S_{j} are disjoint then for any event $A, p(A)=\sum p\left(A \mid S_{i}\right) p\left(S_{i}\right)$.
Example: Suppose we flip a fair coin twice. Let S_{1} be the outcomes where the first flip is H and S_{2} be the outcomes where the first flip is T. What is the probability of $A=$ getting $2 H \mathrm{~s} ? ~ p(A)=(1 / 2)(1 / 2)+(0)(1 / 2)=1 / 4$.

Two events A and B are independent if $p(A \cap B)=p(A) p(B)$. This immediately gives: A and B are independent iff $p(A \mid B)=p(A)$.

If $p(A \cap B)>p(A) p(B)$ then A and B are positively correlated.
If $p(A \cap B)<p(A) p(B)$ then A and B are negatively correlated.
Example: In the example of flipping 3 coins, $p(A \mid B) \neq p(A)$ therefore these two events are not independent. Let C be the event that we get at least one H and at least one T. Let D be the event that we get at most one H. $p(C)=6 / 8, p(D)=4 / 8$, and $p(C \cap D)=3 / 8$ therefore events C and D are independent.

We say events $A_{1}, \ldots A_{n}$ are mutually independent if for all subsets $S \subseteq$ $\{1, \ldots, n\}, p\left(\cap_{i \in S} A_{i}\right)=\prod p\left(A_{i}\right)$. (What is an example of a set of mutually independent events?)

