Discrete Probability and Counting

A finite probability space is a set S and a function $p: S \to R_{\geq 0}$ s.t.:

- $p(s) > 0 \forall s \in S$ and
- $\sum_{s \in S} p(s) = 1.$

We refer to S as the sample space, subsets of S as events and p as the probability distribution. The probability of an event $A \subseteq S$ is $\sum_{a \in A} p(a)$. $(p(\emptyset) = 0.)$

Example: Suppose we flip a fair coin. Saying the coin is fair implies that it is equally likely to flip H (heads) or T (tails) therefore p(H) = p(T) = 1/2.

If we assign all elements of S the same probability, as in the example above, then p is the *uniform distribution*.

Example: Suppose we flip a biased coin where the probability of H is twice as much as the probability of T. Since p(H) + p(T) = 1, this implies p(H) = 2/3 and p(T) = 1/3.

Example: Suppose we flip a fair coin twice. What is the probability of getting one H and one T? All the possible outcomes are $\{HH, HT, TH, TT\}$. Two out of the possible 4 outcomes give us one H and one T, each outcome has probability 1/4 therefore the total probability is 1/2

Suppose we flipped a fair coin n times. How many possible outcomes are there? There are two choices for each flip of the coin, so there are 2^n possible outcomes. The probability of getting any one of these is $1/2^n$. (Where did we see this before?)

Now suppose we want to know the probability of getting exactly k Hs. We need to know how many of the 2^n strings have exactly k Hs. In general, the number of ways to choose k things from n is given by:

 $\binom{n}{k} = n!/(n-k)!k!$

Where n! = n(n-1)(n-2)...1 and is read *n* factorial. We define 0! = 1. Note that $\binom{n}{k} = \binom{n}{n-k}$. These numbers are known as the *binomial coefficients*. Consider $(x + y)^2 = x^2 + 2xy + y^2$. The coefficients of this polynomial are $\{1, 2, 1\}$ which are the numbers $\binom{2}{0}$, $\binom{2}{1}$, $\binom{2}{2}$. In general, $(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$. **Example**: Suppose we flip a fair coin 10 times. What is the probability of getting exactly 4 *Hs*? First we compute $\binom{10}{4} = 210$. Then we compute the total number of outcomes $2^{10} = 1024$. Therefore the probability of getting exactly 4 *Hs* is $210/1024 \approx .205$

Two events are *disjoint* if their intersection is empty.

Example: In the example of flipping 2 coins, the event A = 'getting exactly one H' and the event B = 'getting exactly 2Hs' are disjoint. But, A is not disjoint from the event C = 'getting exactly one T'. In fact, events A and C are the same in this case.

In general we have: $p(A \cup B) + p(A \cap B) = p(A) + p(B)$. Therefore, for disjoint events we have: $p(A \cup B) = p(A) + p(B)$. The first statement follows from the principle of *inclusion* - *exclusion* which states that $|A \cup B| =$ $|A| + |B| - |A \cap B|$.

Example: Say we flip a coin 10 times. What is the probability that the first flip is a T or the last flip is a T? The number of outcomes with the first flip T is 2^9 . The number of outcomes where the last flip is a T is 2^9 . The number of strings with both properties is 2^8 . Hence, the number of strings with either property is $2^9 + 2^9 - 2^8 = 768$.

Suppose we know that one event has happened and then want to ask about another. For two events A and B, the *conditional probability* of A relative to B is $p(A|B) = p(A \cap B)/p(B)$ and read the probability of A given B.

Example: Suppose we flip a fair coin 3 times. Let *B* be the event that we have at least one *H* and *A* be the event of getting exactly 2 *H*s. What is the probability of *A* given *B*? In this case, $(A \cap B) = A$, p(A) = 3/8 (why?), p(B) = 7/8 (why?), and therefore p(A|B) = 3/7.

Notice that the definition of conditional probability also gives us the formula: $p(A \cap B) = p(A|B)p(B)$. For three events we have: $p(A \cap B \cap C) = p(A|B \cap C)p(B|C)p(C)$. (What is a general rule?)

We can also use conditional probabilities to find the probability of an event by breaking the sample space into disjoint pieces. If $S = S_1 \cup S_2 \ldots \cup S_n$

and all pairs S_i , S_j are disjoint then for any event A, $p(A) = \sum p(A|S_i)p(S_i)$.

Example: Suppose we flip a fair coin twice. Let S_1 be the outcomes where the first flip is H and S_2 be the outcomes where the first flip is T. What is the probability of A = getting 2 Hs? p(A) = (1/2)(1/2) + (0)(1/2) = 1/4.

Two events A and B are *independent* if $p(A \cap B) = p(A)p(B)$. This immediately gives: A and B are independent iff p(A|B) = p(A).

If $p(A \cap B) > p(A)p(B)$ then A and B are positively correlated.

If $p(A \cap B) < p(A)p(B)$ then A and B are negatively correlated.

Example: In the example of flipping 3 coins, $p(A|B) \neq p(A)$ therefore these two events are not independent. Let *C* be the event that we get at least one *H* and at least one *T*. Let *D* be the event that we get at most one *H*. p(C) = 6/8, p(D) = 4/8, and $p(C \cap D) = 3/8$ therefore events *C* and *D* are independent.

We say events $A_1, \ldots A_n$ are mutually independent if for all subsets $S \subseteq \{1, \ldots, n\}, p(\bigcap_{i \in S} A_i) = \prod p(A_i)$. (What is an example of a set of mutually independent events?)